
- •Вопросы по сопромату
- •1. Виды нагружения. Напряжение, основные понятия. Реальный объект.
- •2. Напряжение и деформированное состояние, свойства (характеристики) материала.
- •3. Метод сечения, виды внутренних силовых факторов.
- •4. Растяжение. Основные понятия, допущения и зависимости.
- •5. Растяжение, закон Гука. Основные понятия и зависимости, влияние на абсолютное удлинение стержня.
- •6. Механические характеристики материала. Диаграмма растяжения.
- •7. Деформации при растяжении (продольные, поперечные, коэффициент Пуассона).
- •8. Растяжение. Напряжение на наклонной поверхности стержня.
- •9. Кручение, основные понятия, правило знаков.
- •10. Кручение. Напряжение и деформация.
- •11. Изгиб. Основные понятия (допущения, чистый, поперечный). Виды опор.
- •12. Изгиб. Напряжение и деформация.
- •13. Изгиб. Правило Верещагина.
- •14. Сдвиг. Основные понятия, напряжения и зависимости. Расчет на срез.
- •15. Смятие. Основные понятия, напряжения и зависимости. Расчет.
- •16. Основы теории напряжения и деформации состояний, все понятия и положения.
- •17. Обобщенный закон Гука. Деформация при плоском и объемном напряжении состояния.
- •18. Изменение объема при объемном напряженном состоянии. Обобщенный закон Гука.
- •19. Теории предельных состояний. Общие понятия и назначение. 1, 2, 3 теории.
- •20. Теории предельных состояний. Общие понятия и назначение. 4, 5 теории.
- •21. Сложное сопротивление. Общие понятия и назначение. Косой изгиб. Изгиб с растяжением.
- •22. Сложное сопротивление. Общие понятия и назначение. Косой изгиб. Изгиб с кручением.
- •23. Усталостная прочность. Общие понятия и назначение. Параметры циклов нагружения.
- •24. Усталостная прочность. Общие понятия и назначение. Предел выносливости при симметрическом цикле.
- •25. Усталость. Факторы, влияющие на предел усталости. Общие понятия и назначение
- •26.Усталость. Общие понятия и назначение. Расчет на прочность при переменных напряжениях.
- •Вопросы по прикладной механике.
- •1.Реальный объект и его схема. Схематизация свойств материала, формы элементов конструкций нагрузок.
- •2. Внешние и внутренние силы. Применение метода сечения для определения внутренних сил и напряжений.
- •3. Понятие о напряжениях, деформациях и перемещениях. Нормальные и касательные напряжения. Вектор полного перемещения. Линейная и угловая деформация.
- •4. Растяжение и сжатие. Определение внутренних сил. Напряжение в поперечных и наклонных сечениях.
- •5. Продольная и поперечная деформация при растяжении и сжатии: Коэффициент Пуассона. Закон Гука при растяжении. Потенциальная энергия деформации.
- •6. Экспериментальное изучение свойств материалов при растяжении и сжатии. Диаграмма растяжения. Основные характеристики материалов (механические).
- •7. Расчет на прочность при растяжении и сжатии. Допускаемое напряжение и коэффициент запаса.
- •8. Чистый сдвиг. Напряжение и деформация при сдвиге.
- •9. Кручение бруса круглого поперечного сечения. Напряжение и деформация при кручении. Определение максимальных касательных напряжений.
- •10. Геометрические характеристики брусьев круглого поперечного сечения при кручении. Потенциальная энергия деформации при кручении.
- •11. Расчет валов на прочность и жесткость при кручении.
- •12. Моменты инерции сечения. Вычисление моментов инерции брусьев прямоугольного и круглого сечений.
- •13. Изгиб брусьев. Внутренние силовые факторы в поперечных сечениях бруса и их эпюры. Дифференциальные зависимости при изгибе.
- •14. Примеры элементов конструкций, работающих на изгиб. Типы опор и определение опорных реакций.
- •15. Расчет на прочность при изгибе.
- •16. Напряжение в брусе при поперечном изгибе.
- •17. Аналитический метод определения перемещений в балках при изгибе. Дифференциальное уравнение упругой линии. Вычисление прогибов и углов поворотов сечений.
- •18. Потенциальная энергия бруса в общем случае нагружения.
- •19. Определение перемещения бруса случаем Верещагина.
- •20. Напряженное состояние в точках тела. Главные площадки и главные напряжения. Виды напряженного состояния.
- •22. Теории (гипотезы) прочности и их назначение. Понятие об эквивалентных напряжениях. Содержание и области применения теории прочности.
- •23. Сложное сопротивление бруса. Расчеты на прочность при косом изгибе.
- •28. Местные напряжения. Концентрация напряжения.
- •29. Контакные напряжения. Формула Герца для сжатых цилиндров.
- •30. Устойчивость.
- •Вопросы по деталям машин.
- •1. Основные критерии работоспособности и расчета деталей машин: прочность, жесткость, износостойкость, теплостойкость, виброустойчивость.
- •2. Сварные соединения. Область применения. Конструкции сварных соединений.
- •3. Расчет на прочность сварного соединения встык.
- •4. Расчет на прочность сварного соединения внахлестку лобового, флангового, комбинированного швов.
- •5. Шпоночные соединения. Общие сведения и область применения. Расчет на прочность.
- •6. Шлицевые соединения. Конструкция, классификация и область применения.
- •7. Расчет на прочность шлицевых соединений.
- •8. Резьбовое соединение. Основные геометрические параметры резьбы. Классификация резьб по форме профиля, число ходов, направления винтовой линии. Назначение.
- •9. Основные типы резьбовых соединений.
- •10. Теория винтовой пары. Зависимость между моментом завинчивания и осевой силы винта.
- •11. Расчет витков резьбы на срез и смятие.
- •12. Расчет на прочность резьбы и стержня винта при нагружении резьбового соединения осевой растягивающей силе.
- •14. Расчет на прочность стержня винта при нагружении резьбового соединения поперечной нагрузкой (болт поставлен с зазором).
- •15. Механические передачи. Назначения и классификация. Основные кинематические и силовые соотношения передачи.
- •16. Фрикционные передачи, принцип работы. Кинематические силовые зависимости.
- •17. Основные типы вариаторов. Диапазон регулирования в простых и сдвоенных вариаторах.
- •18. Упругое и геометрическое скольжение во фрикционных передачах. Расчет на прочность.
- •19. Ременные передачи. Общие преимущества и недостатки. Область применения. Классификация. Основные типы материалов и конструкция ремней.
- •20. Зубчатые передачи. Оценка и применение. Основные сведения из теории эвольвентного зацепления (эвольвента и её свойства, понятие об основном законе зацепления).
- •21. Основные геометрические параметры прямозубых цилиндрических колес.
- •22. Виды разрушений зубьев. Критерии работоспособности и расчетов зубчатых передач.
- •23. Силы, действующие в зацеплении цилиндрической прямозубой передачи.
- •24. Расчет на прочность зубьев цилиндрических прямозубых передач по контактным напряжениям.
- •25. Расчет зубьев прямозубых цилиндрических колес на изгиб.
- •26. Основные геометрические параметры косозубых цилиндрических колес.
- •27. Силы, действующие в зацеплении цилиндрической косозубой передаче.
- •28. Особенности расчета на прочность цилиндрической косозубой передачи по контактным напряжениям.
- •29. Особенности расчета на прочность цилиндрической косозубой передачи по напряжениям изгиба.
- •30. Материалы зубчатых колес. Определение допускаемых контактных и изгибных напряжений.
- •31. Расчетная нагрузка. Коэффициент концентрации и динамичности нагрузки.
- •32. Валы и оси. Общие сведения.
- •33. Проектный расчет валов.
- •34. Проверочный расчет валов на усталостную прочность.
- •35. Подшипники качения. Общие сведения и классификация.
- •36. Конструкция подшипников качения (шариковый радиальный однорядный и радиально-упорный, радиальный роликовый с короткими цилиндрическими роликами и радиально-упорный конический, шариковый упорный).
- •37. Характер, причины разрушения и критерии расчета подшипников качения.
- •38. Расчет подшипников качения на долговечность.
- •39. Особенности расчета радиально-упорных подшипников.
- •40. Порядок подбора подшипников качения.
11. Изгиб. Основные понятия (допущения, чистый, поперечный). Виды опор.
Изгиб – такой вид нагружения, при котором в попереч. сечениях балки возникают изгибающие моменты. Чистый изгиб – когда в поперечных сечениях балки действует только изгибающий момент. Поперечный изгиб – когда в поперечных сечениях балки кроме изгибающих моментов возникают поперечные силы. Допущения: 1. плоскости остаются плоскими; 2. плоскости поперечного сечения балки остаются перпендикулярными. Деформация при изгибе – результат поворота сечений на угол φ как единое целое. Верхние слои балки сжимаются, нижние – растягиваются. Слой, который не претерпевает никаких изменений, называется нейтральным. Расчетные схемы: 1. балка на 2 опорах, 2. балка с жесткой заделкой (консольная балка).
В технике существуют 3 вида опор различных конструкций:
1. шарнирно-подвижные -позволяют поворот груза относительно оси шарнира. Имеют линейные перемещения.
2. шарнирно-неподвижные - возможность поворота груза относительно шарнира. Линейных перемещений нет. Воспринимает любые виды нагрузок.
3. жесткая заделка - не допускает ни линейных перемещений, ни поворота груза вокруг опоры. Может воспринимать любые виды нагрузок.
12. Изгиб. Напряжение и деформация.
Изгиб – такой вид нагружения, при котором в попереч. сечениях балки возникают изгибающие моменты. Деформация при изгибе – результат поворота сечений на угол φ как единое целое. Верхние слои балки сжимаются, нижние – растягиваются. Слой, который не претерпевает никаких изменений, называется нейтральным.
Сумма элементарных сил от касательных напряжений по площади поперечного сечения изогнутой балки – это внутренняя равнодействующая внутренних поперечных сил Q, действующих по оси Y. Сумма сил от нормальных напряжений в поперечном сечении характеризует равнодействующий изгибающий момент. Q=∑Fky; МиI=∑Ми(F). Для всех практических расчетов необходимо знать закон распределения ВСФ по длине конструкции (на каждом её участке), т.е. построить эпюры поперечных сил и изгибающих моментов.
Рассмотрим консольную балку, на которую действует сосредоточенный момент М0. условие чистого изгиба: Q=0, M=const, ρ=const. Поперечная сила Q=dM/dx, поперечная нагрузка: q=dQ/dx. МI=M0. Рассмотрим элементарный участок балки с чистым изгибом. Слой АВ получает абсолютное удлинение: ∆l=ВВ1=∆dx. Из ∆КВВ1: ∆dx=Y·tgφ=Y·dφ. Из ∆ODК: dx=ρ·tgdφ=ρ·dφ. Относительная деформация: ε=∆dx/dx=Y/ρ. Напряжение при изгибе: σ=Eε=EY/ρ (1). Продольная сила: N=(S)∫σdS=0; 0=Е/ρ·(S)∫YdS. Любая площадка на расстоянии Y создает статический момент (S)∫YdS. Момент М0 действует в плоскости YOX относительно оси Z. Элементарный момент в поперечном сечении: dM=σ·dS·Y. Мz=Е/ρ·(S)∫Y2dS, где (S)∫Y2dS=Iz. Кривизна: 1/ρ=Миz/ЕIz (2), где ЕIz – жесткость при изгибе (зависит от материала, формы попереч. сечения). 1/ρ=dφ/dx, φ=Мl/EIz. (2)->(1): σ/ЕY=Мz/ ЕIz, σmax=MzYmax/Iz, где Iz/Ymax – момент сопротивления в сечении. σmax=Mz/Wz.
13. Изгиб. Правило Верещагина.
Изгиб – такой вид нагружения, при кот. в попереч. сечениях балки возник. изгиб. моменты. Правило Верещагина – графоаналитич. прием вычисления интегралов. Заключается в замене операций интегрирования перемножением площади эпюры моментов от внешней нагрузки F на ординату ус линейной эпюры моментов от единич. силы F0, расположенную под центром тяжести площади первой эпюры. Исп.только если жесткость сечения бруса по всей длине постоянна, т.к. эпюры от единич. силовых факторов на прямолинейн. участках оказываются линейными: Mx1=f(z)=b+kz. Интеграл (l)∫MxFMx1dz можно заменить на (0)∫(l)f1(z)f2(z)dz=(0)∫(l)f1(z)(b+kz)dz=b(0)∫(l)f1(z)dz+k(0)∫(l)zf1(z)dz. С – центр тяжести. Интеграл Мора, составленный для каж.из участков нагружения балки, = произведению площади F нелинейн.эпюры изгиб.моментов MxF на ординату ус эпюры изгиб.момента Мх1, соотв-щую положению центра тяжести площади F: Vk=∑F∙yc/EIx.