
- •Вопросы по сопромату
- •1. Виды нагружения. Напряжение, основные понятия. Реальный объект.
- •2. Напряжение и деформированное состояние, свойства (характеристики) материала.
- •3. Метод сечения, виды внутренних силовых факторов.
- •4. Растяжение. Основные понятия, допущения и зависимости.
- •5. Растяжение, закон Гука. Основные понятия и зависимости, влияние на абсолютное удлинение стержня.
- •6. Механические характеристики материала. Диаграмма растяжения.
- •7. Деформации при растяжении (продольные, поперечные, коэффициент Пуассона).
- •8. Растяжение. Напряжение на наклонной поверхности стержня.
- •9. Кручение, основные понятия, правило знаков.
- •10. Кручение. Напряжение и деформация.
- •11. Изгиб. Основные понятия (допущения, чистый, поперечный). Виды опор.
- •12. Изгиб. Напряжение и деформация.
- •13. Изгиб. Правило Верещагина.
- •14. Сдвиг. Основные понятия, напряжения и зависимости. Расчет на срез.
- •15. Смятие. Основные понятия, напряжения и зависимости. Расчет.
- •16. Основы теории напряжения и деформации состояний, все понятия и положения.
- •17. Обобщенный закон Гука. Деформация при плоском и объемном напряжении состояния.
- •18. Изменение объема при объемном напряженном состоянии. Обобщенный закон Гука.
- •19. Теории предельных состояний. Общие понятия и назначение. 1, 2, 3 теории.
- •20. Теории предельных состояний. Общие понятия и назначение. 4, 5 теории.
- •21. Сложное сопротивление. Общие понятия и назначение. Косой изгиб. Изгиб с растяжением.
- •22. Сложное сопротивление. Общие понятия и назначение. Косой изгиб. Изгиб с кручением.
- •23. Усталостная прочность. Общие понятия и назначение. Параметры циклов нагружения.
- •24. Усталостная прочность. Общие понятия и назначение. Предел выносливости при симметрическом цикле.
- •25. Усталость. Факторы, влияющие на предел усталости. Общие понятия и назначение
- •26.Усталость. Общие понятия и назначение. Расчет на прочность при переменных напряжениях.
- •Вопросы по прикладной механике.
- •1.Реальный объект и его схема. Схематизация свойств материала, формы элементов конструкций нагрузок.
- •2. Внешние и внутренние силы. Применение метода сечения для определения внутренних сил и напряжений.
- •3. Понятие о напряжениях, деформациях и перемещениях. Нормальные и касательные напряжения. Вектор полного перемещения. Линейная и угловая деформация.
- •4. Растяжение и сжатие. Определение внутренних сил. Напряжение в поперечных и наклонных сечениях.
- •5. Продольная и поперечная деформация при растяжении и сжатии: Коэффициент Пуассона. Закон Гука при растяжении. Потенциальная энергия деформации.
- •6. Экспериментальное изучение свойств материалов при растяжении и сжатии. Диаграмма растяжения. Основные характеристики материалов (механические).
- •7. Расчет на прочность при растяжении и сжатии. Допускаемое напряжение и коэффициент запаса.
- •8. Чистый сдвиг. Напряжение и деформация при сдвиге.
- •9. Кручение бруса круглого поперечного сечения. Напряжение и деформация при кручении. Определение максимальных касательных напряжений.
- •10. Геометрические характеристики брусьев круглого поперечного сечения при кручении. Потенциальная энергия деформации при кручении.
- •11. Расчет валов на прочность и жесткость при кручении.
- •12. Моменты инерции сечения. Вычисление моментов инерции брусьев прямоугольного и круглого сечений.
- •13. Изгиб брусьев. Внутренние силовые факторы в поперечных сечениях бруса и их эпюры. Дифференциальные зависимости при изгибе.
- •14. Примеры элементов конструкций, работающих на изгиб. Типы опор и определение опорных реакций.
- •15. Расчет на прочность при изгибе.
- •16. Напряжение в брусе при поперечном изгибе.
- •17. Аналитический метод определения перемещений в балках при изгибе. Дифференциальное уравнение упругой линии. Вычисление прогибов и углов поворотов сечений.
- •18. Потенциальная энергия бруса в общем случае нагружения.
- •19. Определение перемещения бруса случаем Верещагина.
- •20. Напряженное состояние в точках тела. Главные площадки и главные напряжения. Виды напряженного состояния.
- •22. Теории (гипотезы) прочности и их назначение. Понятие об эквивалентных напряжениях. Содержание и области применения теории прочности.
- •23. Сложное сопротивление бруса. Расчеты на прочность при косом изгибе.
- •28. Местные напряжения. Концентрация напряжения.
- •29. Контакные напряжения. Формула Герца для сжатых цилиндров.
- •30. Устойчивость.
- •Вопросы по деталям машин.
- •1. Основные критерии работоспособности и расчета деталей машин: прочность, жесткость, износостойкость, теплостойкость, виброустойчивость.
- •2. Сварные соединения. Область применения. Конструкции сварных соединений.
- •3. Расчет на прочность сварного соединения встык.
- •4. Расчет на прочность сварного соединения внахлестку лобового, флангового, комбинированного швов.
- •5. Шпоночные соединения. Общие сведения и область применения. Расчет на прочность.
- •6. Шлицевые соединения. Конструкция, классификация и область применения.
- •7. Расчет на прочность шлицевых соединений.
- •8. Резьбовое соединение. Основные геометрические параметры резьбы. Классификация резьб по форме профиля, число ходов, направления винтовой линии. Назначение.
- •9. Основные типы резьбовых соединений.
- •10. Теория винтовой пары. Зависимость между моментом завинчивания и осевой силы винта.
- •11. Расчет витков резьбы на срез и смятие.
- •12. Расчет на прочность резьбы и стержня винта при нагружении резьбового соединения осевой растягивающей силе.
- •14. Расчет на прочность стержня винта при нагружении резьбового соединения поперечной нагрузкой (болт поставлен с зазором).
- •15. Механические передачи. Назначения и классификация. Основные кинематические и силовые соотношения передачи.
- •16. Фрикционные передачи, принцип работы. Кинематические силовые зависимости.
- •17. Основные типы вариаторов. Диапазон регулирования в простых и сдвоенных вариаторах.
- •18. Упругое и геометрическое скольжение во фрикционных передачах. Расчет на прочность.
- •19. Ременные передачи. Общие преимущества и недостатки. Область применения. Классификация. Основные типы материалов и конструкция ремней.
- •20. Зубчатые передачи. Оценка и применение. Основные сведения из теории эвольвентного зацепления (эвольвента и её свойства, понятие об основном законе зацепления).
- •21. Основные геометрические параметры прямозубых цилиндрических колес.
- •22. Виды разрушений зубьев. Критерии работоспособности и расчетов зубчатых передач.
- •23. Силы, действующие в зацеплении цилиндрической прямозубой передачи.
- •24. Расчет на прочность зубьев цилиндрических прямозубых передач по контактным напряжениям.
- •25. Расчет зубьев прямозубых цилиндрических колес на изгиб.
- •26. Основные геометрические параметры косозубых цилиндрических колес.
- •27. Силы, действующие в зацеплении цилиндрической косозубой передаче.
- •28. Особенности расчета на прочность цилиндрической косозубой передачи по контактным напряжениям.
- •29. Особенности расчета на прочность цилиндрической косозубой передачи по напряжениям изгиба.
- •30. Материалы зубчатых колес. Определение допускаемых контактных и изгибных напряжений.
- •31. Расчетная нагрузка. Коэффициент концентрации и динамичности нагрузки.
- •32. Валы и оси. Общие сведения.
- •33. Проектный расчет валов.
- •34. Проверочный расчет валов на усталостную прочность.
- •35. Подшипники качения. Общие сведения и классификация.
- •36. Конструкция подшипников качения (шариковый радиальный однорядный и радиально-упорный, радиальный роликовый с короткими цилиндрическими роликами и радиально-упорный конический, шариковый упорный).
- •37. Характер, причины разрушения и критерии расчета подшипников качения.
- •38. Расчет подшипников качения на долговечность.
- •39. Особенности расчета радиально-упорных подшипников.
- •40. Порядок подбора подшипников качения.
Какую работу нужно написать?
3. Расчет на прочность сварного соединения встык.
Наиб. простым и
надежным видом соединения явл. соединение
встык, образуемое путем заполнения
зазора между торцами соединяемых
элементов наплавленным Ме. Допущение:
все напряжения шва распр-ся равномерно
по длине. Проверка прочности производится
на растяжение или сжатие по формуле:
σ=F/S=F/δl≤[σ],
где δ, l
– толщина и ширина полосы, [σ] - доп.
напряж. для сварных соединений (завис.
от присадочного материала), δl
- условная рабочая площадь сечения шва,
высота шва К принимается равной min
толщине свариваемых элементов δ. Т.к.
доп. напряжение для сварного шва ниже,
чем для основного Ме, стремятся к ↑
длины стыкового шва. С этой целью
применяют соединение встык с косым
швом.
4. Расчет на прочность сварного соединения внахлестку лобового, флангового, комбинированного швов.
Вып.
с пом. угловых швов, кот. в сечении имеет
довольно неопределенную форму. В теор.
расчетах на прочность сечение шва
принимается в виде равнобед. ∆ с расчетной
высотой К.Лобовой
шов расположен
перпендик-но линии действия нагружающей
силы. Напряженное состояние шва
неоднородно. Основными явл. касат. напр.
τ в пл-ти стыка деталей и нормал. напр.
σ в перпендик. пл-ти. В инженер.практике
лобовые шва рассчитывают только по τ.
За расчет.сечение принимают сечения по
биссектрисе nn,
т.к. разрушение происх.по нему.
Τ=F/S=F/hl=F/(0,7Kl)≤[τ].
Фланговый
шов расположен
параллельно линии действия нагружающей
силы. Основ. напряж. - касат. τ в сечении
mm.На
концах шва τ > чем в середине. В практике
длину швов ограничивают: lфл<50К.
расчет вып.по среднему напряжению:
τ=F/(0,7K∙2l)≤[τ].
Комбинир.
соединения лобовыми
и фланговыми швами рассчит. на основе
принципа распределения нагрузки ~
несущей способности отдельных швов.
τ=F/[0,7K(2lфл+lл)]≤[τ].
5. Шпоночные соединения. Общие сведения и область применения. Расчет на прочность.
Шпон. соединения служат для закрепления деталей на осях и валах, их лучшей центрации. Все основ. виды шпонок можно разд. на клиновые (напряженные соединения) и призматические (ненапр.). размеры шпонок и допуски на них стандартизованы.
Призматич. шпонки широко применяют во всех областях МС. Простота конструкции, сравнительно ↓ стоимость. Требует изготовления вала и отверстия с большой точностью. Во многих случаях посадка ступицы на вал производится с натягом. Момент передается с вала на ступицу боковыми гранями шпонки. При этом на них возникают напряжения смятия σсм, а в продольном сечении шпонки – напряжения среза τ. Допущения: шпонка врезана в вал на ½ своей высоты, напряжения σсм распределяются равномерно по высоте и длине шпонки, плечо равнодействующей этих напряжений ≈d/2. Условия прочности: σсм=4Т/(hlpd)≤[σсм], τ=2Т/(blpd)≤[τ], [σсм]=100…200МПа. У стандарт. шпонок размеры b, h подобраны так, что нагрузку соединения ограничивают не напряжения среза, а напряж. смятия. поэтому при расчетах исп. ф-лу σсм. Отриц. св-ва призматич. шпонок: соединение ослабляет вал и ступицу шпоночными пазами; концентрация напряжений в зоне шпоночной канавки ↓ сопротивление усталости вала; прочность соединения ↓ прочности вала и ступицы. Соединение клиновыми шпонками характ.свободной посадкой ступицы на вал, расположением шпонки в пазе с зазорами по бок. граням, передачей вращ. момента от вала к ступице в основном силами трения, кот. образуются от запрессовки шпонки. Много недостатков, сейчас практически не используют.