Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Долгов. Лабораторная диагностика нарушений гемо...doc
Скачиваний:
146
Добавлен:
17.11.2019
Размер:
11.03 Mб
Скачать

1) Многоступенчатый этап, приводящий к акти­ вации протромбина и превращению его в ак­ тивный фермент - тромбин;

Рис. 37. Каскад активации плазменного гемостаза

2) конечный этап, в котором под влиянием тром­ бина из фибриногена образуется фибрин. Схема коагуляционного каскада плазменно­ го гемостаза представлена на рис. 37.

Внешний путь образования протромбиназы

Внешний путь образования протромбиназы короткий, что ведет к быстрому образованию тромбина.

При контакте ТФ и ф.VIIа формируется комп­лекс, который активирует ф.Х. Фактор Ха при уча­стии фактора Va, в присутствии ионов Са2+, на от­рицательно заряженной фосфолипидной поверхно-

сти формирует протромбиназу. В настоящее время полагают, что внешний путь - основной физиоло­гический путь запуска процесса свертывания кро­ви. Подробно его значение будет описано в разделе «Современная теория свертывания крови».

Активность внешнего пути поддерживается за счет механизма положительной обратной свя-

Плазменные белки гемостаза

зи (рис. 38). Положительная обратная связь вклю­чается на нескольких этапах каскада свертывания. Наиболее существенными являются активация тромбином факторов VII и V.

Рис. 38. Внешний каскад свертывания крови. Начина­ется с контакта крови с тканевым фактором (ТФ), который, взаимодействуя с ф.VIIа, образует комплекс, активирую­щий ф,Х, Усиление активности внешнего каскада сверты­вания крови обеспечивается 2 механизмами положитель­ной обратной связи

Внутренний путь образования протромбиназы. Факторы контактной активации

Внутренний путь активации свертывания на­чинается с активации контактных факторов коа-гуляционного каскада: ф.ХII, прекалликреина и высокомолекулярного кининогена.

Факторы контактной активации - ф.ХII, пре-калликреин, высокомолекулярный кининоген, С1-ингибитор - синтезируются в печени. In vitro эти белки участвуют в активации внутреннего каскада свертывания.

В лабораторных условиях активация проис­ходит на некоторых небиологических отрицатель­но заряженных поверхностях, например на стек­ле, каолине, кремнии, сульфате декстрана, а так­же в присутствии эллаговой кислоты. Имеются данные, что важным механизмом активации кон­тактных факторов является их взаимодействие с поверхностью, характеризующейся свойствами твердой фазы. В патологических условиях кон­тактная активация, вероятно, происходит на мем­бранах клеток крови и эндотелия, а также при контакте с коллагеном субэндотелия.

Схематично взаимодействие белков при контактной активации показано на рис. 39. Ви­димо, в «подходящих условиях» происходит аутоактивация и взаимоактивация ф.ХII, ПК до активных ферментов. In vitro активация контакт­ной системы приводит к активации ф.ХI, кото­рый в свою очередь активирует ф.IХ, образую­щий с ф.VIII теназный комплекс. Теназный ком­плекс (название комплекса происходит от анг­лийского слова ten - десять) активирует ф.Х, а далее процесс свертывания идет по уже описан-

ному пути. Поскольку сборка теназного комп­лекса происходит на фосфолипидной поверхно­сти, для нее необходимо присутствие ионов каль­ция. Контактная фаза активации поддерживает­ся положительной обратной связью. Тромбин активирует ф.VIII и -XI.

Физиологическое значение контактной акти­вации, роль факторов контактной активации в процессе свертывания крови, физиологические активаторы и условия активации этих факторов в организме требуют дальнейшего изучения.

Рис. 39. Контактная фаза активации плазменных фак­торов. Контакт с поверхностью твердого тела вызывает ак­тивацию фактора XII, который запускает каскад свертыва­ния плазмы, каскад активации фибринолиза, активацию калликреин-кининовой системы (положительная обратная связь) и активацию системы комплемента (отрицательная обратная связь)

Плазменные белки гемостаза

Классическая теория свертывания крови ос­тавляла слишком много вопросов и противоре­чила клиническим данным. Например, с одной стороны, было неясно, какая поверхность в фи­зиологических условиях является активатором, с другой стороны, почему дефицит факторов внутреннего пути (ф.VIII, -IX, -XI) приводит к выраженной кровоточивости при нормальной активности факторов внешнего пути, а глубокий дефицит факторов контактной активации, как правило, не сопровождается геморрагическим синдромом. В современной каскадно-матричной теории гемостаза эти противоречия разрешены.

С современной точки зрения, контактная ак­тивация играет большую роль во взаимодействии системы свертывания крови с другими протеоли-тическими системами крови (фибринолитичес-кой, ангиотензин-рениновой, калликреин-кини-новой, системой комплемента и др.).

В настоящее время изучены следующие функ­ции белков контактной активации:

1. Брадикинин стимулирует повышение внутри­ клеточной концентрации цАМФ и приводит к:

  • Вазодилатации и снижению артериально­ го давления.

  • Активации системы фибринолиза путем стимуляции секреции тканевого актива­ тора плазминогена.

  • Ингибированию активации тромбоцитов.

  • Стимуляции репарации и росту гладкомы- шечной ткани в поврежденных сосудах.

  1. Прямое ингибирование тромбин-индуциро- ванной активации тромбоцитов.

  2. Активация фибринолиза.

  • Непосредственная активация плазмино­ гена калликреином и ф.ХIIа. Однако оба этих белка значительно менее активны, чем тканевой активатор и урокиназа.

  • Активация калликреином проурокиназы до активной сериновой протеазы - двух- цепочечной урокиназы.

  1. Блокада клеточной адгезии.

  2. Антиангиогенное действие.

  3. По-видимому, контактная активация играет важную роль в активации свертывания кро­ ви при взаимодействии крови с нефизиоло­ гическими поверхностями, в частности при установке искусственных протезов или искус­ ственных клапанов сердца.

Внутренний путь образования протромбиназы (рис. 40) включает активирующее действие ф.ХПа на ф.Х1, который в свою очередь активирует ф.1Х. Поскольку значение контактной активации в про­цессе свертывания крови переосмыслено, физиоло­гическая роль ф.Х1 изучается. Видимо, в физиоло­гических условиях ф.Х1 в основном активируется тромбином. ф.Х1 довольно устойчив к инактива­ции ингибиторами и имеет длительный период по­лувыведения. Образовавшись в достаточном коли­честве, ф.Х1 увеличивает количество активного ф.1Х, за счет чего соответственно значительно воз­растает концентрация тромбина, который в свою очередь активирует по механизму положительной обратной связи ф.1Х, -VIII и -V. В то же время из­быток тромбина тормозит начало процесса фибри-

Рис. 40. Внутренний каскад активации плазменного ге­мостаза. Начинается с взаимной активации контактных факторов системы гемостаза, Фактор XIIа переводит фак­тор XI в ХIа. Фактор ХIа активирует фактор IX. Все после­дующие этапы активации свертывания по внутреннему пути требуют ионов Са2+ и зависят от присутствия фосфоли-пидов. Фактор IХа активирует фактор X, но эта реакция не очень эффективная. Однако появившийся тромбин ак­тивирует фактор VIII. Активный фактор Villa вместе с фак­тором IХа, ионами Са2+ и фосфолипидами очень эффек­тивно активирует фактор Ха, Обратная связь поддержи­вает развитие процесса за счет активации тромбином ф.VIII, -IX и -V

Плазменные белки гемостаза

нолиза за счет активируемого тромбином ингиби­тора фибринолиза (TAFI).

Ингибитор С1-компонента комплемента (С1-ингибитор) является элементом системы контактной активации. Помимо комплемента, он ингибирует ф.ХIIа (см. раздел «Ингибито­ры системы свертывания крови»).

Другим ингибитором процесса контактной активации в физиологических условиях является апротинин.

Рис. 41. Теназный и протромбиназный комплексы. Об­разование этих комплексов сопровождается резким уве­личением активации соответственно фактора X и протром­бина (фактор II)

Конечный этап свертывания плазмы - образование фибринового сгустка

Конечная стадия каскада свертывания плаз­мы заключается в образовании из растворимого плазменного белка фибриногена нерастворимо­го фибрина под воздействием тромбина и ф.ХIII (рис. 42).

Рис. 42. Последовательные стадии образования нераст­воримого фибрина из растворимого фибриногена

Тромбин

Тромбин - ключевой фермент гемостаза. Тромбин - витамин-К-зависимый белок - явля­ется сериновой протеазой. В печени происходит синтез неактивного предшественника протромби­на, который в дальнейшем циркулирует в плаз­ме. В комплексе ф.Ха-Va-II на фосфолипидной поверхности происходит ограниченный протео-лиз протромбина. Образуется несколько актив­ных структур с уменьшающейся молекулярной массой - мезотромбин, α-тромбин, β-тромбин, γ-тромбин. Наиболее значимым продуктом яв­ляется сериновая протеаза - α-тромбин. На мо-

лекуле тромбина имеется, по крайней мере, 4 сай­та связывания для субстратов, ингибиторов, ко­факторов и иона кальция. Это, а также способ­ность тромбина активно функционировать не только на твердой фазе, но и в токе крови позво­ляет ему выполнять многочисленные функции. Важнейшие функции тромбина в гемостазе:

  • Ограниченный протеолиз фибриногена до фибрин-мономеров (происходит в жидкой фазе - кровотоке).

  • Активация ф.V, -VIII, -VII, -XI.

  • Активация тромбоцитов.

  • В комплексе с тромбомодулином тромбин активирует протеин С.

  • Активация ф.ХIII.

  • Ограниченный протеолиз плазматической карбоксипептидазы В до активной формы - активируемого тромбином ингибитора фиб­ ринолиза (TAFI).

• Стимуляция выброса из эндотелиоцитов тка­ невого активатора плазминогена. Однако роль тромбина в организме не огра­ ничивается вышеперечисленными функциями. Ключевая роль в процессе свертывания крови, активация сосудистого эндотелия, клеточный рост и процессы репарации, активация перифе­ рических клеток крови, активация фибриноли­ за - это наиболее изученные функции тромби­ на. Видимо, со временем этот список значитель­ но увеличится.

Плазменные белки гемостаза

Косвенным подтверждением важности тром­бина для организма может служить тот факт, что известны лишь единичные описания пациентов с гомозиготным дефектом молекулы тромбина, а пациенты с гипопротромбинемией встречаются чрезвычайно редко.

Важнейшим ингибитором тромбина являет­ся антитромбин III. Несколько меньшую роль играет кофактор гепарина П.

Фактор XIII

Фактор XIII - трансглютаминаза. В плазме большая часть неактивного ф.ХIII связана с фиб­риногеном. Активация ф.ХIII происходит путем ог­раниченного протеолиза неактивного ф.ХIII тром­бином одновременно с отщеплением пептида А от фибриногена. Как и большинство других фермен­тов, он выполняет несколько функций в гемостазе:

  • Стабилизирует фибриновый сгусток путем образования ковалентных связей между у-це- пями мономеров фибрина.

  • Участвует в связывании, α-ингибитора плаз- мина с фибрином, что способствует предотв­ ращению преждевременного лизиса фибрино- вого сгустка.

  • Значительную роль ф.ХIII играет в процес­ сах полимеризации актина, миозина и других компонентов цитоскелета тромбоцитов, что чрезвычайно важно для активации тромбо­ цитов и ретракции образовавшегося фибри- нового сгустка. Это объясняет наличие ф.ХIII в цитоплазме тромбоцитов.

  • Обнаружены перекрестные реакции ф.ХIII с ф.V, фон Виллебранд протеином. Помимо непосредственно реакций гемостаза,

ф.ХIII участвует в процессах образования соеди­нительной ткани, репаративных реакциях:

  • Участвует в связывании молекул фибронек- тина между собой и с молекулами фибрина. Вероятно, это важно для направленной миг­ рации клеток и процессов репарации.

  • Играет роль в биосинтезе коллагена, катали­ зируя образование связей между молекулами коллагена типов I, II, III и V.

крови и образовывать прочную объемную струк­туру, которая эффективно закрывает поврежде­ние сосуда и предотвращает потерю крови. Кон­центрация фибриногена в крови здорового чело­века значительно выше, чем концентрация дру­гих белков гемостаза, что связано с его уникаль­ной ролью.

Синтез фибриногена происходит в печени и не зависит от витамина К. Некоторое количество фибриногена синтезируется в мегакариоцитах и содержится в тромбоцитах. Этот фибриноген не­сколько отличается от фибриногена, синтезиро­ванного в печени.

Помимо гепатоцитов и мегакариоцитов, ак­тивность гена γ-цепей фибриногена обнаружена в некоторых других тканях - головном мозге, лег­ких, костном мозге, где γ-цепи фибриногена, ви­димо, выступают в роли молекул адгезии.

Фибриноген - большой многокомпонентный белок, который состоит из трех пар полипептид­ных цепей - 2α, 2β, 2γ, связанных между собой дисульфидными мостиками и переплетенных друг относительно друга (рис. 43).

Пространственная структура молекулы фибриногена состоит из центрального Е-доме-на и 2 периферических D-доменов. α- и β-цепи формируют глобулярные структуры - фибрино-пептиды А и В (ФПА и ФПВ), которые закры­вают комплементарные участки в фибриногене и не позволяют этой молекуле полимеризовать-ся. Процесс взаимодействия фибриногена и тром­бина происходит в жидкой фазе - кровотоке. Тромбин соединяется с фибриногеном и отщеп­ляет конечные последовательности от α- и β-це-пей - 2 ФПА и 2 ФПВ (рис. 44). Образуются ра-

Фибриноген.

Формирование гемостатического тромба

Фибриноген - уникальная молекула, облада­ющая свойством быстро полимеризоваться в токе

Рис. 43. Фибриноген состоит из 3 парных белковых мо­лекул α, β и γ, Фибринопептиды А и В (ФПА и ФПВ) отщеп­ляются тромбином от фибриногена, инициируя тем самым процесс полимеризации и превращение фибриногена в фибрин

Плазменные белки гемостаза

Рис. 44. Формирование фибрин-мономеров из фибри­ногена. Тромбин отщепляет фибринопептиды ФПА и ФПВ от молекулы фибриногена, тем самым образуются раство­римые мономеры фибрина, которые способны полимери-зоваться до линейного полимера, или «растворимого фиб­рина»

створимые мономеры фибрина. В дальнейшем происходит спонтанное соединение комплимен­тарных участков фибрин-мономеров. Сначала образуются димеры, далее олигомеры и в ко­нечном итоге собираются мононити полимери-зованного фибрина. Таким образом, фибрино-вая цепь формируется спонтанной, конец в ко­нец полимеризацией фибрин-мономеров, при которой концевая часть одного мономера вза­имодействует с центральной частью другого мо­номера в месте отщепления ФПА. Результатом такой полимеризации является линейный поли­мер шириной в 2 молекулы (рис. 44). На этом этапе фибрин легко растворим в 5-молярной

мочевине, поэтому он получил название раство­римого фибрина.

Соединяясь с фибриногеном, тромбин не толь­ко отщепляет фибринопептиды. но и активирует связанный с ним фактор XIII. Фактор ХIIIа обра­зует ковалентные связи между γ-цепями (D-доме-нами) нитей растворимого фибрина (рис. 45), ко­торые соединяются за счет образования пептид­ных мостиков между боковыми радикалами ли­зина и глютамина. Сшитые между собой моно­нити фибрина образуют прочную сеть, менее под­верженную фибринолизу и более устойчивую к механическим воздействиям. В такой форме фиб­рин не растворяется в 5-молярной мочевине и на­зывается нерастворимым фибрином.

Рис. 46. Организованный тромб, в котором в фибрино-вую сеть включены клетки крови


Образовавшийся фибриновый сгусток - трех­мерная молекулярная сеть, в которую включены тромбоциты, эритроциты и лейкоциты (рис. 46). Активированные тромбоциты, связанные с нитями фибрина через рецепторы GPIIb-IIIa, сокращают-

Рис. 45. Образование нерастворимого фибрина под влиянием фактора ХIIIа

Плазменные белки гемостаза

ся под действием тромбостенина (тромбоцитарно-го актомиозина) вследствие присущих им контрак-тильных свойств (см. главу «Тромбоциты»). Про­исходит ретракция сгустка крови. Сгусток уплот­няется, из него выдавливается часть сыворотки. Формирование окончательного тромба наступает на 10-15-й минуте после полимеризации фибрина.

Если тромбоциты отсутствуют или имеют дефект GPIIb-IIIa, то ретракции кровяного сгуст­ка не происходит и он быстро лизируется в про­цессе фибринолиза. При отсутствии ретракции тромба в сосудистом русле возможен отрыв тром-ботических масс и эмболия удаленных сосудов (тромбоэмболия).