- •1.Парна лінійна регресія 26
- •Аналіз якості моделі: перевірка статистичної значущості оцінок параметрів економетричної моделі.
- •Визначення коефіцієнта еластичності
- •3.Методи прогнозування часових рядів: методи соціально - економічного прогнозування.
- •1. Основні задачі економетрії.
- •2. Емпірична модель множинної лінійної регресії.
- •3. Гетероскедастичність і зважений метод найменших квадратів.
- •1. Особливості економічних спостережень і вимірів.
- •2.Парна лінійна регресія.
- •3. Розрахунок довірчих інтервалів для оцінок параметрів із заданою надійністю.
- •Визначення параметрів вибраного рівняння.
- •Визначення коефіцієнта еластичності
- •Розрахунок прогнозного значення регресанду та побудова для нього із заданим рівнем значущості довірчих інтервалів.
- •1.Особливості математичного моделювання
- •2.Проведення кореляційного аналізу за допомогою ms Excel
- •3. Методи прогнозування часових рядів: методи соціально-економічного прогнозування
- •Основні дефініції економіко-математичного моделювання.
- •Узагальнений метод найменших квадратів.
- •Методи прогнозування часових рядів: прогнозування тенденцій часового ряду за аналітичними методами.
- •1.Парна лінійна регресія
- •2.Перевірка статистичної значущості коефіцієнта множинної детермінації за критерієм Фішера
- •3.Перевірка гіпотези про існування тренда
- •1.Сутність моделювання як методу наукового пізнання.???
- •3.Методи прогнозування часових рядів: прогнозування тенденцій часового ряду за механічними методами.
- •Особливості математичного моделювання.
- •2.Проведення кореляційного аналізу за допомогою Microsoft Excel.
- •3.Методи прогнозування часових рядів: методи соціально-економічного прогнозування.
- •1. Етапи економіко-математичного моделювання
- •2. Прогнозування значень залежної змінної
- •3. Гетероскедастичність і зважений метод найменших квадратів
- •Елементи класифікації економіко-математичних моделей
- •2. Специфікація моделі
- •3. Розрахунок прогнозного значення регресанду та побудова для нього із заданим рівнем значущості довірчих інтервалів
- •Принципи математичного моделювання.
- •2.Загальна лінійна економетрична модель.
- •1.Основні дефініції економіко-математичного моделювання
- •2. Узагальнений метод найменших квадратів
- •3. Методи прогнозування часових рядів: прогнозування тенденцій часового ряду за аналітичними методами
- •1.Особливості економічних спостережень і вимірів.
- •2. Економетричний аналіз лінійної функції парної регресії в ms Exel.
- •3.Основні поняття і попередній аналіз рядів динаміки: основні характеристики динаміки часового ряду.
- •Основні задачі економетрії
- •Розрахунок довірчих інтервалів для оцінок параметрів із заданою надійністю
- •Методи прогнозування часових рядів: прогнозування тенденцій часового ряду за середніми характеристиками.
- •1.Парна лінійна регресія
- •2.Перевірка статистичної значущості коефіцієнта множинної детермінації за критерієм Фішера.
- •3.Перевірка гіпотези про існування тренда
- •Метод найменших квадратів
- •Визначення дисперсій оцінок параметрів та їх стандартних помилок.
- •1.Випадкові збудники в рівнянні лінійної регресії.
- •2.Побудова моделі множинної регресії.
- •1.Етапи побудови економетричної моделі.
- •2. Визначення часткових коефіцієнтів еластичності.
- •3. Методи прогнозування часових рядів: прогнозування тенденцій часового ряду за аналітичними методами.
- •2. Емпірична модель множинної лінійної регресії.
- •Визначення параметрів вибраного рівняння
- •Суть гетероскедастичності
- •3.Основні аспекти поняття і попередній аналіз рядів динаміки: основні характеристики динаміки часового ряду
- •1. Аналіз якості моделі: перевірка загальної якості рівняння регресії.
- •2. Моделі з порушенням передумов використання звичайного методу найменших квадратів.
- •3. .Перевірка гіпотези про існування тренда.
- •Аналіз якості моделі: довірчі інтервали для оцінок параметрів економетричної моделі.
- •2.Побудова моделі множинної регресії
- •3.Методи прогнозування часових рядів: прогнозування тенденцій часового ряду за середніми характеристиками.
- •Специфікаціямоделі.
- •Методи прогнозування часових рядів: прогнозування тенденцій часового ряду за аналітичними методами.
- •1. Сутність моделювання як методу наукового пізнання.
- •2.Гомоскедастичні та гетероскедастичні моделі.
- •1.Елементи класифікації економіко-математичних моделей.
- •3.Узагальнений метод найменших квадратів.
- •Особливості математичного моделювання.
- •Аналіз якості моделі: перевірка загальної якості рівняння регресії.
- •Визначення дисперсії оцінок параметрів та їх стандартних помилок.
- •1. Принципи математичного моделювання.
- •2. Економетричний аналіз лінійної функції парної регресії в ms Exel.
- •1.Основні дефініції економіко-математичного моделювання.
- •2. Аналіз якості моделі: перевірка статистичної значущості оцінок параметрів економетричної моделі.
- •3. Перевірка статистичної значущості коефіцієнта множинної детермінації за критерієм Фішера.
- •1. Етапи економіко-математичного моделювання
- •2. Прогнозування значень залежної змінної.
- •3. Моделі з порушенням передумов використання звичайного методу найменших квадратів.
- •2.Умови Гауса-Маркова.
- •3.Загальна лінійна економетрична модель.
- •Основні задачі економетрії
- •Перевірка статистичної значущості коефіцієнта множинної детермінації за критерієм Фішера.
- •Основні поняття та попередній аналіз рядів динаміки: поняття часового ряду
- •1. Сутність моделювання як методу наукового пізнання.
- •2. Умови Гауса-Маркова.
- •3.Методи прогнозування часових рядів: прогнозування тенденцій часового ряду за механічними методами.
- •1. Етапи економіко-математичного моделювання
- •2. Прогнозування значень залежної змінної
- •3. Гетероскедастичність і зважений метод найменших квадратів
- •1.Елементи класифікації економіко-математичних моделей
- •2.Специфікація моделі
- •3.Розрахунок прогнозованого значення регресанту та побудова для нього із заданим рівнем значущості довірчих інтервалів.
- •1. Принципи математичного моделювання.
- •2. Загальна лінійна економетрична модель.
- •3. Основні поняття і попередній аналіз рядів динаміки: систематичні та випадкові компоненти часового ряду.
- •1.Особливості економічних спостережень і вимірів.
- •2. Економетричний аналіз лінійної функції парної регресії в ms Exel.
- •3.Основні поняття і попередній аналіз рядів динаміки: основні характеристики динаміки часового ряду.
- •1. Основні задачі економетрії.
- •2. Розрахунок довірчих інтервалів для оцінок параметрів із заданою надійністю.
3.Методи прогнозування часових рядів: методи соціально - економічного прогнозування.
Прогноз – це науково-обгрунтоване судження стосовно можливих станів об’єктів майбутнього, альтернативні шляхи і терміни їх здійснення. Має випадковий характер, але, оскільки він будується на підставі науково-обгрунтованих уявлень про стан і розв’язок об’єкта, здійснення його є в надані ймовірності.
Прогноз оцінюється як очікуваний ймовірний стан об’єкта в майбутньому.
Процес розроблення прогнозів наз прогнозуванням.
Необхідність прогнозувати розвиток тієї чи іншої ситуації, майбутніх змін тих чи інших обставин ставлять дослідників перед проблемою вибору конкретного методу прогнозування.
Методи соціально-економічного прогнозування:
Кількісні методи:
Каузальні: багатомірні регресійні моделі; економетричні моделі; комп’ютерна імітація. Застосовуються в тих випадках, коли шуканий стан залежить не тільки від часу, а й від багатьох змінних.
Аналіз часових рядів: оснований на припущенні у відповідності з яким, те. Що відбулося в минулому, дає гарне наближення в оцінці майбутнього, і є способом виявлення тенденцій минулого та їх продовження в майбутнє.
Якісні методи
Білет №24
1. Основні задачі економетрії.
Найважливішою задачею є оцінювання параметрів і перевірка значущості економетричної моделі. Першим етапом цього процесу є специфікація моделі в математичній формі. Другий етап — збір і підготовка економічної інформації. На третьому етапі оцінюються параметри моделі. Четвертий етап — це перевірка моделі на вірогідність. Дуже важливими на цьому етапі є оцінки дисперсії залишків моделі. Ці оцінки відіграють вирішальну роль при з’ясуванні якості економетричних моделей, вони необхідні для визначення надійності обчислених параметрів і для застосування розроблених моделей у прогнозуванні.
Дослідження розвитку економічних процесів і прогнозування, їх динаміки
Правильний вибір факторів при побудові математично-статистичної моделі
Вибір і побудова матем-статист моделі, здійснення ряду модельних експериментів, аналіз одержаних результатів і перенесення їх на реальну економічну систему як основу прийняття незалежних рішень.
2. Емпірична модель множинної лінійної регресії.
На
будь-який економічний показник Y,
як правило, впливає не один, а декілька
факторів (регресорів)
.
В
подібних випадках маємо справу з
множинною лінійною моделлю (регресією),
що описує взаємний зв’язок між залежною
змінною Y
та регресорами
і яку можна подати такому вигляді:
Загальний запис теоретичної лінійної множинної регресії може бути зроблений в такому вигляді:
(16.1)
де
– теоретичні коефіцієнти регресії
(часткові коефіцієнти);
– вільний член;
– значення
-го
регресора при і-ому
спостереженні;
– випадковий збудник.
Для
однозначного визначення параметрів
моделі необхідно, щоб виконувалась
нерівність
де
n
– число спостережень; m
– число регресорів
У
векторно-матричній формі теоретичну
модель можна подати так:
(16.2)
де
Якщо
теоретичний вектор
є величиною сталою і нам невідомою, то
емпіричний вектор
ми можемо визначити шляхом обробки
статистичної інформації вибірки обсягом
n.
Враховуючи те, що вибірка складає лише
незначну частину генеральної сукупності
(n≤N),
то інформація, яку одержимо при
статистичній обробці, про регресори Xj
моделі буде не повною і для кожної іншої
вибірки буде потерпати певні зміни.
Отже, компоненти
емпіричного вектора
будуть містити елемент випадковості.
Таким чином,
,
як і сам вектор
будуть випадковими величинами, які
мають певні закони розподілу ймовірностей
із відповідними числовими характеристиками.
Із вище наведеного можемо тепер стверджувати, що є статистичною оцінкою для теоретичного вектора . А тому постають питання математичної статистики: зміщена чи незміщена ця статистична оцінка; в якому довірчому інтервалі із заданою надійністю γ можуть перебувати теоретичні компоненти (параметри) і сама функція регресії; як здійснити перевірку на статистичну значущість теоретичних параметрів по заданому рівню значущості α.
Для вирішення цих питань нам необхідно визначити числові характеристики для параметрів (j=0,1,2,...,m) і для самої функції регресії, використовуючи при цьому елементи матричної алгебри як інструментарію, застосовуючи який ми можемо без громіздких викладок отримати необхідні результати.
