
- •Исследование операций
- •Учебный план
- •Тематические планы лекций Лекция № 1. Исследование операций как методологическая основа теории принятия управленческих решений. Основные термины, определения, формализация
- •Лекция № 2.Моделирование целевых установок развития сложных системах
- •Лекция № 3. Примеры моделей операций
- •Лекция № 4. Элементы выпуклого анализа
- •Лекция № 5. Основы выпуклого программирования. Теория Куна-Таккера
- •Лекция № 6. Линейное программирование
- •Лекция № 7. Игровые методы обоснования решений
- •Лекция № 8. Моделирование операций на основе марковских случайных процессов
- •Лекция № 9. Элементы теории массового обслуживания
- •Список источников и литературы
- •2. Дополнительная литература
- •Лекция № 1. Исследование операций как методологическая основа теории принятия управленческих решений. Основные термины, определения, формализация
- •1.1Цели и задачи курса «Исследование операций»
- •1.2Системный подход в решении проблем управления
- •1.2.1Формальное определение системы и примеры систем
- •1.2.2Основные понятия целевого подхода в управлении
- •1.2.3Концептуальная постановка проблемы
- •1.2.4Понятие структуризации проблемы
- •1.2.5Основные понятия объектно-субъектного подхода в управлении
- •1.2.6Формализация системы и фаз процесса принятия решений
- •1.2.6.1Выявление проблемы — анализ ее существования
- •1.2.6.2Постановка проблемы
- •1.2.6.3Поиск решения проблемы
- •1.2.6.4Принятие решения
- •1.2.6.5Исполнение решения
- •1.2.6.6Оценка выполненного решения
- •1.3Формализм теории исследования операций (модель операции)
- •1.4Оценка эффективности стратегии
- •1.4.1Оценка неопределенности стратегии
- •1.4.2Функциональная оптимизация стратегий
- •1.4.3Смешанные стратегии
- •Лекция № 2.Моделирование целевых установок в сложных системах (2 ч.)
- •2.1Классификация целей систем
- •2.2Графы целей и способы их построения
- •2.3Методы свертки показателей эффективности
- •2.3.1.1Экономический способ формирования критериев
- •2.3.1.2Критические состояния объекта
- •2.3.1.3Последовательное достижение частных целей
- •2.3.1.4Логическое объединение критериев
- •2.3.1.5Обобщенное логическое объединение
- •2.3.1.6Случайное и неопределенное объединение
- •2.3.1.7Единицы измерения целей
- •2.3.1.8Полнота системы элементарных действий над критериями
- •2.4Экспертная оценка эффективности
- •2.5Критерии эффективности организационного управления
- •Лекция № 3. Примеры моделей операций (2 ч.)
- •3.1Модель анализа технологических процессов
- •3.2Аппроксимация функций полиномами
- •3.3Модель численного поиска экстремума
- •3.4Модель действий нападения против защиты в военных операциях
- •3.5Модель производства продукции в условиях конкуренции
- •3.6Модель оценки надежности неремонтируемых систем
- •3.6.1Параллельное дублирование системы в целом
- •3.6.2«Холодное резервирование» системы в целом
- •3.6.3Параллельное дублирование агрегатов системы
- •3.6.4«Холодное резервирование» агрегатов
- •3.7Модель для выбора дальности стрельбы в дуэльной ситуации
- •3.8Линейная обработка измерений (фильтрация) координат движущихся объектов
- •3.8.1Случайное блуждание координат движущегося объекта
- •3.8.2Зависимое блуждание координат движущегося объекта
- •3.8.3Ограниченное блуждание координат движущегося объекта
- •Лекция № 4.Элементы выпуклого анализа
- •4.1Вспомним основные понятия высшей алгебры
- •4.2Определение и примеры выпуклых множеств.
- •-Мерный куб с центром в точке и ребром :
- •-Мерный шар радиуса с центром в точке :
- •4.3Проекция точки на множество. Свойства.
- •4.4Теоремы отделимости выпуклых множеств.
- •4.5Крайние точки выпуклых множеств.
- •4.6Альтернативы Фредгольма.
- •4.7Выпуклые функции и их свойства.
- •4.8Связь между выпуклыми функциями и выпуклыми множествами
- •4.9Свойства выпуклых функций.
- •4.9.1Дифференцируемость скалярной выпуклой функции.
- •4.9.2Дифференцируемость по направлению.
- •4.9.3Непрерывность.
- •4.10Выпуклые дифференцируемые функции и их экстремальные свойства
- •4.11Критерии оптимальности
- •Лекция № 5.Основы выпуклого программирования. Теория Куна-Таккера
- •5.1Основная задача выпуклого программирования
- •5.2Формальная постановка задачи выпуклого программирования
- •5.3 Классические способы отыскания решения экстремальных задач
- •5.4Условие регулярности
- •5.5Функция Лагранжа. Условия оптимальности
- •5.6Теорема (Куна-Таккера).
- •5.7Дифференциальные условия Куна-Таккера
- •5.8Общая схема решения задачи выпуклого программирования
- •Лекция № 6.Линейное программирование
- •6.1Примеры моделей операций, приводящих к злп
- •6.1.1Задача о диете
- •6.1.2Общая задача планирования выпуска продукции (распределительная задача)
- •6.1.2.1Общая задача планирования выпуска продукции
- •6.1.2.2Выпуск комплектной продукции
- •6.1.3Транспортная задача
- •6.1.3.1Классическая транспортная задача
- •6.1.3.2Транспортная задача с фиксированными доплатами
- •6.2Различные виды злп и их эквивалентность
- •6.2.1Стандартная задача линейного программирования
- •Лекция № 7. Игровые методы обоснования решений
- •7.1Теория игр как теория обоснования решений в условиях конфликта интересов
- •7.2Конфликт и его формальная модель
- •7.3Формализация принятия решения в условиях конфликта
- •7.4Оптимальность в конфликтной ситуации
Лекция № 4. Элементы выпуклого анализа
Содержание учебного плана: евклидово пространство; неравенство Коши-Буняковского; топологические, метрические и нормированные пространства в евклидовом пространстве; примеры выпуклых множеств; свойства выпуклых множеств и теорема о разделяющей гиперплоскости; крайние точки выпуклого множества; теорема о представлении произвольной точки выпуклого множества выпуклой комбинацией его крайних точек; выпуклые функции и их свойства; связь между выпуклыми функциями и выпуклыми множествами (4 ч.).
Лекция № 5. Основы выпуклого программирования. Теория Куна-Таккера
Содержание учебного плана: задача выпуклого программирования (ЗВП) как задача определения стратегий-констант на выпуклом множестве контролируемых факторов; множители Лагранжа и их интерпретация; функция Лагранжа; условия регулярности; седловые точки и достаточные условия оптимальности ЗВП; теорема Куна-Таккера (4 ч.).
Лекция № 6. Линейное программирование
Содержание учебного плана: примеры моделей операций, приводящих к задаче линейного программирования (ЗЛП); различные виды ЗЛП и их эквивалентность; геометрическая интерпретация решения ЗЛП; основные понятия симплекс-метода решения ЗЛП; симплекс-алгоритм; методы отыскания опорного плана; двойственная ЗЛП; теоремы двойственности; экономическая интерпретация двойственных переменных (6 ч.).
Лекция № 7. Игровые методы обоснования решений
Содержание учебного плана: теория игр как теория обоснования решений в условиях конфликта интересов; формальная модель конфликта, игроки и их функции выигрыша, коалиции действия, коалиции интересов, ходы игроков, стратегии игроков, исход конфликта; примеры игр; классификация игр; верхняя и нижняя цена игры, седловые точки, решение игры, существование седловой точки выпукло-вогнутых антагонистических игр; существование седловой точки для выпукло-вогнутых игр; необходимые и достаточные условия существования седловой точки; примеры матричных игр; имеющих седловые точки; доминирование стратегий; решение матричной игры в смешанных стратегиях; основная теорема матричных игр; сведение поиска решения матричной игры к решению задачи линейного программирования (4 ч.).
Лекция № 8. Моделирование операций на основе марковских случайных процессов
Содержание учебного плана: модели операций, представимых марковскими случайными процессами с дискретными состояниями; граф состояний; цепи Маркова; уравнения Колмогорова; вероятности перехода за несколько шагов; замыкания и замкнутые множества; классификация состояний; алгебраические критерии достижения заданных состояний (4 ч.).
Лекция № 9. Элементы теории массового обслуживания
Содержание учебного плана: модели операций, представимых системами массового обслуживания; задачи теории массового обслуживания; классификация систем массового обслуживания; основные характеристики систем массового обслуживания; пуассоновский поток заявок; одноканальная систем массового обслуживания с отказами; многоканальная систем массового обслуживания с отказами; уравнения Эрланга; одноканальная систем массового обслуживания с ожиданием; многоканальная систем массового обслуживания с ожиданием (4 ч.).
Список источников и литературы
Основная литература
Вентцель Е.С. Исследование операций. — М.: Советское радио. 1972.
Гантмахер Р. Теория матриц.— М.: Наука. 1967.
Гермейер Ю.Б. Введение в исследование операций. — М.: Наука. 1971.
Давыдов Э.Г. Исследование операций. М.: Наука. 1994.
Канторович Л.В., Горстко А.Б. Оптимальные решения в экономике. — М.: Наука. 1972.
Карманов В.Г. Математическое программирование. М.: Наука. 1975.
Краснощеков П.С., Петров А.А. Принципы построения моделей. — М.: МГУ. 1983.
Моисеев Н.Н. Элементы теории оптимальных систем. Оптимизация и исследование операций.— М.: Наука. 1975.
Морозов В.В., Сухарев А.Г., Федоров В.В. Исследование операций в задачах и упражнениях. — М.: Высшая школа. 1986.
Оре О. Теория графов. — М.: Наука. 1968.
Оуэн Г. Теория игр. — М.: Мир. 1971.
Феллер В. Введение в теорию вероятностей и ее приложения. В 2-х томах. Пер. с англ. — М.: Мир. 1984.