
- •В. В. Шлыков
- •Соотношения между сторонами и углами произвольного треугольника
- •Правильные многоугольники. Длина окружности и площадь круга. Координатный метод
- •Уважаемые друзья!
- •Глава 1 вписанные и описанные многоугольники
- •§1. Взаимное расположение прямой
- •И окружности. Касательная к окружности
- •Глава 1
- •Глава 1
- •12 Глава 1
- •14 Глава 1
- •Глава 1
- •Задачи к § 1
- •20 Глава 1
- •Глава 1
- •Глава 1
- •§ 2. Центральные и вписанные углы
- •Глава 1
- •Глава 1
- •Глава 1
- •3. Свойство пересекающихся хорд. Теорема о касательной и секущей.
- •Глава 1
- •Задачи к § 2
- •34 Глава 1
- •Глава 1
- •Глава 1
- •Глава 1
- •§ 3. Замечательные точки треугольника
- •Глава 1
- •Задачи к § 3
- •Глава 1
- •Глава 1
- •Глава 1
- •§ 4. Вписанные и описанные треугольники
- •Глава 1
- •Глава 1
- •Глава 1
- •56 Глава 1
- •Глава 1
- •Глава 1
- •§ 5. Вписанные и описанные четырехугольники
- •Глава 1
- •Глава 1
- •Задачи к § 5
- •Глава 1
- •Глава 1
- •Глава 1
- •Глава 1 Вопросы к первой главе
- •Соотношения между сторонами и углами произвольного треугольника Теорема синусов
- •2) Отсюда следует, что выполняются равенства: Глава 2
- •§ 1. Теорема синусов
- •Теорема косинусов. Формула Герона. Решение треугольников
- •§ 2. Теорема косинусов. Формула Герона. Решение треугольников
- •Задачи к § 2 I
- •Вопросы ко второй главе
- •Глава 3
- •§ 1. Правильные многоугольники
- •Правильные многоугольники
- •2. Окружность, описанная около правильного многоугольника.
- •Глава 3
- •Глава 3
- •4) Площадь s правильного п-угольника можем найти по
- •Глава 3
- •5) Радиус r вписанной окружности выражается через
- •Задачи к § 1
- •108 Глава 3
- •110 Глава 3
- •§ 2. Длина окружности
- •2. Теорема об отношении длины окружности к ее диаметру.
- •Глава 3
- •Глава 3
- •Задачи к § 2
- •Глава 3
- •Глава 3
- •Глава 3
- •Глава 3
- •§ 3. Площадь круга. Площадь сектора
- •Глава 3
- •Глава 3
- •Задачи к § 3
- •130 Глава 3
- •132 Глава 3
- •Глава 3
- •Глава 3
- •§ 4. Координатный метод
- •Глава 3
- •Глава 3
- •Глава 3
- •Задачи к § 4
- •Глава 3
- •Глава 3 Вопросы к третьей главе
- •Глава 4 задачи для повторения
- •§ 1. Треугольники и окружность
- •1. Прямоугольный треугольник и окружность
- •Задачи для повторения
- •Глава 4
- •Глава 4
- •2. Равнобедренный треугольник и окружность
- •Глава 4
- •Глава 4
- •3. Произвольный треугольник и окружность
- •Глава 4
- •Глава 4
- •§ 2. Четырехугольники и окружность
- •1. Произвольный четырехугольник и окружность
- •Глава 4
- •2. Трапеция и окружность
- •Глава 4
- •166 Глава 4
- •Глава 1
- •Глава 2 § 1
- •Глава 3 § 1
- •Глава 4 § 1
- •Значения тригонометрических функций
- •172 Приложение
- •220004, Минск, проспект Победителей, 11.
Глава 1
Постройте окружность, которая проходит через данную точку A и касается данной окружности в данной на ней точке F.
Постройте окружность, которая касается данной прямой l и данной окружности в данной на ней точке T.
Через точку пересечения двух данных окружностей проведите прямую так, чтобы часть ее, расположенная внутри окружностей, равнялась данному отрезку a.
Дан треугольник ABC, AB = c, BC = a, CA = b. Постройте окружности с центрами соответственно в точках A, B, C так, чтобы они попарно касались друг друга внешним образом.
Центральные и вписанные углы
Скачено с Образовательного портала www.adu.by
24
Глава 1
Вписанные и описанные многоугольники
25
§ 2. Центральные и вписанные углы
1 . Центральные углы. Градусная мера дуги окружности. В данном параграфе изучим понятия центрального и вписанного углов.
О п р е д е л е н и е. Центральным углом окружности назы вается угол с вершиной в центре этой окружности.
а) б)
Рис. 18
Например, на рисунке 18, а изображен центральный угол TOF, который меньше развернутого угла, а на рисунке 18, б — центральный угол DOS — больший развернутого угла.
Любые две различные точки A и В окружности служат концами двух дуг. Для различия этих дуг на каждой из них отмечается некоторая промежуточная точка. Например, если на дугах отмечены точки F и T, то в этом случае дуги обозначаются ∪ATB и ∪AFB и данная запись читается так: «дуга ATB и дуга AFB» (рис. 19, а). Если понятно, о какой из двух дуг идет речь, употребляется также обозначение ∪AB.
Дуга AB окружности называется полуокружностью, если ее концы служат концами диаметра этой окружности.
Например, на рисунке 19, б изображены полуокружности ALB и AC B .
Пусть A и B не являются диаметрально противолежащими точками окружности с центром в точке O. Тогда лучи OA и OB служат сторонами двух центральных углов, один из которых меньше, а другой больше развернутого угла (рис. 20, а).
Дуга AB окружности ω (O; R) и центральный угол AO B , внутри которого лежит эта дуга, называются соответствующими.
Если дуга окружности лежит внутри соответствующего ей центрального угла, который меньше развернутого угла, то говорят, что эта дуга меньше полуокружности.
Если дуга окружности лежит внутри соответствующего ей центрального угла, который больше развернутого угла, то говорят, что дуга больше полуокружности.
а) б) в)
Рис.
20
Рис. 19
Скачено с Образовательного
Для сравнения дуг окружности вводится понятие градусной меры дуги окружности.
Определение. Градусной мерой дуги окружности называется градусная мера соответствующего ей центрального угла.
Градусная мера дуги АВ, как и сама дуга, обозначается yjAB.
Таким образом, если дуга АВ окружности меньше полуокружности, а Z АОВ — соответствующий ей центральный угол, то yjAB = Z АОВ (рис. 20, а).
Если дуга АВ является полуокружностью, то ее градусная мера равна 180° (рис. 20, б).
портала www.adu.by
26