
- •Полупроводниковые приборы. Классификация. Область применения.
- •Полупроводниковые диоды. Классификация. Область применения.
- •Полупроводниковые транзисторы. Классификация. Область применения.
- •Полупроводниковые резисторы. Классификация. Область применения.
- •Фотоэлектрические приборы. Классификация. Область применения.
- •Аналоговые усилители. Классификация. Основные характеристики и параметры.
- •Избирательные усилители. Усилители постоянного тока. Усилители мощности. Область применения.
- •Стабилизаторы напряжения. Классификация. Параметры. Область применения.
- •Логические операции. Схемная реализация.
- •Цифровые устройства. Классификация. Комбинационные цу. Дешифраторы. Шифраторы, мультиплексоры, демультиплексоры.
- •Комбинационные сумматоры.
- •Триггера. Классификация. Область применения.
- •Регистры и счетчики. Классификация. Схемы. Область применения.
- •Цифро-аналоговые преобразователи. Назначение. Принцип работы. Матрица r-2r. Область применения.
- •Аналого-цифровые преобразователи. Классификация. Область применения. Параллельные ацп. Ацп поразрядного взвешивания.
- •Интегрирующие ацп. Ацп двойного интегрирования
- •Таймеры. Классификация. Область применения.
- •Источники вторичного напряжения. Структурные схемы. Выпрямители и фильтры.
- •Транзисторный усилительный каскад с общим эммитером
- •Дискретные цифровые сар: математическое описание, z передаточные функции.
- •Анализ дискретных сар
- •23. Логарифмические частотные характеристики сар.
- •24. Переходные функции и переходные характеристики сар. Реакция сар на произвольный входной сигнал
- •25.Типовые звенья сар и их частотные и временные характеристики Апериодическое звено
- •Интегрирующее звено
- •26. Устойчивость линейных сар: определение, теоремы Ляпунова, алгебраический критерий устойчивости Гурвица.
- •27. Частотные критерии устойчивости линейных сар
- •28. Анализ качества линейных сар.
- •29. Синтез корректирующих устройств линейных сар.
- •30. Анализ нелинейных сар.
- •31. Показатели качества эс
- •33. Себестоимость и уровень качества эс
- •34. Корреляционная связь показателей эc Диаграмма разброса (поле корреляции)
- •35. Метод расслаивания чм.
- •36. Метод «авс-анализ»
- •Складские запасы изделий
- •37. Виды статистического контроля эс
- •38. Количественные показатели надежности эс
- •39. Последовательная модель надежности
- •40. Параллельная модель надежности эс
- •41. Основные этапы автоматизации: их характеристики и особенности.
- •42. Назначение, классификация и области применения роботов
- •43. Манипуляционные роботы: типы, характеристики, применение
- •44. Структура механизмов манипуляц-х роботов и характеристики их геом. Свойств
- •45. Приводы манипуляторов и роботов: классификация, особенности применения
- •46. Конструкции схватов промышленных роботов(пр), особенности применения
- •47. Проектирование архитектуры интегрированной компьютерной системы управления (иксу)
- •48. Описание технологического процесса как объекта автоматизированного управления
- •49. Описание производственного процесса как объекта автоматизированного управления: реализации арм различных уровней
- •50. Выбор датчиков тп:типы измерительных устройств, подключение
- •51. Теорема Котельникова (теорема отсчетов). Квазидетерминированные сигналы.
- •52. Преобразование измерительных сигналов. Виды модуляций
- •53. Цифровые частотомеры
- •54. Цифровые фазометры
- •55. Цифровые вольтметры (цв) временного преобразования
- •56. Микропроцессорные цифровые измерительные приборы.
- •57. Резистивные датчики (реостатные, тензорезисторы)
- •58. Электромагнитные датчики (индуктивные, трансформаторные, магнитоупруние).
- •59. Пьезоэлектрические датчики
- •60. Тепловые датчики (термопары, термометры сопротивления).
- •61. Организация и этапы разработки конструкторских документов.
- •62. Виды кд.
- •63. Стандартизация и бнк.
- •64. Виды и типы схем, обозначения по ескд.
- •65. Методы компоновки конструкции эвс.
- •66. Климатические зоны и категории исполнения.
- •67. Способы защиты эвс от влаги.
- •Примеры конструкций средств защиты
- •68. Защита эвс от механических воздействий.
- •Рекомендации по защите рэа от вибрационных воздействий
- •69. Способы обеспечения теплового режима эвс.
- •70. Электромагнитные воздействия. Виды экранов.
- •Экран из ферромагнитного материала с большой магнитной проницаемостью (метод шунтирования экраном).
- •71. Виды линий связи.
- •72. Особенности конструирования бортовых эвс.
- •73. Особенности конструкций персональных эвм.
- •74. Унификация. Разновидности стандартизации.
- •Разновидности стандартизации
- •75. Требования к трассировке пп
- •76. Электромонтажные провода. Припои и флюсы.
- •77. Волоконно-оптические линии связи (волс). Примеры использования.
- •78. Эргономические требования к пультам и органам управления и сигнализации
- •79. Эргономика конструирования лицевой панели прибора.
- •80. Защита эс от воздействия радиации.
- •81. Производственный и технологический процесс и их составляющие
- •82. Исходные данные для разработки технологических процессов. Основные этапы разработки единичного технологического процесса.
- •83. Требования к оформлению технологической документации. Примеры записи технологических операций.
- •84. Основные методы изготовления печатных плат и их особенности
- •85. Конструктивно-технологические разновидности радиоэлектронных узлов и их сопоставительный анализ.
- •86. Основные технологические операции при изготовлении радиоэлектронных узлов с монтажом на поверхность
- •87. Нанесение паяльной пасты и клея и используемое при этом оборудование
- •88. Принципы организации работы сборочных автоматов
- •89. Особенности выполнения пайки при изготовлении электронных модулей ( пайка оплавлением, волной припоя, селективная пайка).
- •90. Особенности выполнения ремонтных работ: демонтаж и монтаж компонентов.
- •91. Материалы, используемые в технологии монтажа на поверхность.
- •92 Виды соединительных операций при сборке.
- •94. Соединение пайкой: разновидности, области применения, примеры выполнения паяных соединений.
- •95. Разработка схемы сборки изделий.
- •96. Нормирование затрат времени при проектировании технологических процессов (штучное и подготовительно-заключительное время, определение такта и ритма выпуска изделий).
- •97. Изготовление деталей эс методом литья
- •98. Разделительные и формообразующие операции холодной штамповки
- •99. Общая характеристика методов формообразования материалов и деталей при производстве эс
- •100. Изготовление электронных модулей по технологии внутреннего монтажа.
- •101. Приведите структуру контроллера (микроЭвм) с раздельными шинами адрес/данные и следующим составом:
- •102. Укажите место на структурной схеме эвм различных интерфейсов. Как объединять эвм в систему? Какие условия следует выполнить при передаче данных? Обоснуйте.
- •103.Расставьте по убыванию значимости параметры эвм по критерию производительности. Охарактеризуйте эти параметры.
- •105. Сопоставьте принципы печати лазерного и струйного принтеров, опишите и сравните их.
- •107. Выберите способ обмена данными между процессором и внешним устройством. Обоснуйте выбор. Напишите процедуру ввода или вывода данных в память эвм в мнемонике команд (уровень ассемблера).
- •108. Приведите основные архитектурные варианта построения операционных систем. Поясните понятие «виртуальная машина»
- •110. Спроектировать устройство микропрограммного управления автономного типа. Источник управляющих кодов – счетчик микрокоманд, число состояний счетчика – 32. Разрядность регистра микрокоманд – 24
- •112. Прерывания как способ изменения адреса в управляющей команде. Привести пример системы прерывания. Описать процедуру опознавания запроса на прерывание с маскированием
- •С линией запроса
- •113. Системы памяти эвм. Назначение каждого типа элементов памяти и место его в иерархии. Что дает для характеристик эвм каждый тип элементов памяти
- •114. Память программ. Виды носителей. Жесткие диски и их твердотельные аналоги
- •115. Компиляторы. Назначение компиляторов, их виды. Последовательность процедуры компиляции
- •116. Контроль информации при последовательной передаче двоичного кода. Методы контроля. Контроль передачи информации при обмене словами (байтами). Методы.
- •117. Приведите основные структуры объединения процессоров в многопроцессорных системах. В чем суть ограничений архитектуры Фон-Неймана
- •118. Сравните структуры двух мпк, имеющих организацию smp и mpp. Приведите их структурные схемы
- •119. Сравните характеристики двух последовательных интерфейсов rs-232с и usb. Приведите структурную организацию интерфейсов и формат передаваемых данных
- •121. Основные понятия процесса проектирования систем управления. Цель процесса проектирования.
- •122. Системный подход к проектированию.
- •123. Структура процесса автоматизированного проектирования
- •124. Основные типы автоматизированных систем, разновидности сапр.
- •Структура сапр
- •125. Стадии проектирования автоматизированных систем и аспекты их описания.
- •126. Особенности проектирования автоматизированных систем.
- •127. Понятие о cals-технологиях.
- •128. Открытые системы.
- •129. Техническое обеспечение систем автоматизированного проектирования
- •130. Типы сетей, методы доступа в сетях, протоколы и стеки протоколов в вычислительных сетях
- •Стеки протоколов и типы сетей в ас
- •131. Сапр систем управления
- •132. Автоматизация управления предприятием, логистические системы.
- •133. Асутп, автоматизированные системы делопроизводства.
- •Автоматизированные системы делопроизводства
- •134. Математическое обеспечение анализа проектных решений.
- •135. Компоненты математического обеспечения, структура вычислительного процесса анализа.
- •136. Математические модели в процедурах анализа на макроуровне
- •137. Математическое обеспечение анализа на микроуровне
- •138. Математическое обеспечение анализа на функционально-логическом уровне
- •139. Математическое обеспечение на системном уровне
- •140. Математическое обеспечение подсистем машинной графики и геометрического моделирования.
- •141. Схемы мультивибратора на транзисторах и оу.
- •142. Схема одновибратора на транзисторах.
- •144. Повторитель на оу
- •145. Двухтактный трансформаторный усилитель мощности, работающий в режиме ав.
- •150. Генератор гармонических колебаний на транзисторах.
- •151. Архитектурные принципы Фон-Неймана. Ограничения.
- •152. Основные понятия информационно-вычислительных систем, классификация по критерию потоков информации
- •153. Совмещение операций и многопрограммная работа. Режим работы в реальном времени
- •154.Типы структур многопроцессорных вс. Параллельные эвм, классификация. Три архитектурных класса машин
- •Классификация по программной организации
- •Классификация по архитектуре
- •155. Принципы ввода-вывода информации в пэвм. Роль и структура контроллера ввода информации
- •Принцип ввода-вывода информации в пэвм. Роль и структура контроллера ввода информации
- •156. Программная реализация ввода чисел с клавиатуры. Привести алгоритм ввода двухразрядного числа с клавиатуры для его суммирования с другими числами
- •157. Вывод и.На дисплей.Принципы отображения информации на экране дисплея. Lcd-дисплеи
- •158. Процедура вывода символьной информации на дискретные индикаторы.
- •159. Загрузчики. Процедура загрузки. Статистические и динамические загрузки.
- •160. Управление реальной памятью. Виртуальная память. Таблица соответствия адресов
Аналого-цифровые преобразователи. Классификация. Область применения. Параллельные ацп. Ацп поразрядного взвешивания.
А
ЦП
– это устройство, предназначенное для
преобразования непрерывно изменяющейся
во времени физической величины в
эквивалентные ей значения цифровых
кодов. В качестве аналоговой величины
может быть напряжение, ток, угловое
перемещение, давление газа и т.д.
Процесс АЦП предполагает последовательное выполнение следующих операций:
выборку значений исходной аналоговой величины в некоторые заданные моменты времени, т.е. дискретизация сигнала во времени;
квантование (округление до некоторых известных величин) полученной в дискретные моменты времени последовательности значений исходной аналоговой величины по уровню;
кодирование – замена найденных квантовых значений некоторыми числовыми кодами.
Операция
квантования по уровню функции U(t)
заключается в замене бесконечного
множества её значений на некоторое
конечное множество значений
,
называемых уровнями квантования. Для
выполнения этой операции весь диапазон
изменения функции D=U(t)max-U(t)min
разбивают
на некоторое число уровней N
и производят округление каждого значения
функции U(t)
до ближайшего уровня квантования Un(t).
Величина h=D/N носит название шага квантования. В результате процесса аналого-цифрового преобразования аналоговая функция U(t) заменяется дискретной функцией Un(t). В аналитической форме процесс аналого-цифрового преобразования может быть представлен выражением
,где
U(t)i
- значение функции U(t)
в i-м
шаге;h
- шаг квантования;
ki
- погрешность преобразования на i-м
шаге.
Процесс квантования по уровню связан с внесением некоторой погрешности i , значение которой определяется неравенством
.
Погрешность зависит от разрядности.
Основные параметры АЦП делятся на статистические и динамические.
К статистическим относятся:
вид преобразуемой величины: напряжение, ток, угловое перемещение и т.д.;
диапазон изменения входных величин;
разрядность;
абсолютная разрешающая способность;
абсолютная погрешность преобразования в конечной точке шкалы шк ;
нелинейность преобразования L.
К динамическим параметрам относятся:
время преобразования Tпр, обычно определяется как интервал времени от начала преобразования до появления на выходе АЦП устойчивого цифрового кода;
максимальная частота дискретизации, при которой погрешность преобразования не выходит за заданные пределы.
В зависимости от принципа действия АЦП делятся на АЦП параллельного преобразования, АЦП поразрядного взвешивания, следящие АЦП и интегрирующие АЦП. АЦП параллельного преобразования реализуют метод непосредственного считывания и являются самыми быстродействующими.
В
качестве примера рассмотрим принцип
работы микросхемы К1107ПВ1.
Микросхема имеет 6 разрядов и обеспечивает быстродействие до 20 МГц.
Устройство содержит делитель R1R64, 64 компаратора, преобразователь кода и регистр. На входы компараторов поступают входной сигнал Ux и напряжение с делителя. При этом на выходах компараторов формируется 64-разрядный единичный код. Число единиц в нем равно числу уровней квантования. Полученный единичный код поступает на вход преобразователя кода, в котором он преобразуется в 6 - разрядный двоичный код. Полученный двоичный код записывается в регистр и выдается на выходные шины.В данном АЦП время преобразования занимает один такт.
А
ЦП
поразрядного взвешивания
(или поразрядного кодирования) выполняет
одно преобразование за n
тактов.
Основой АЦП является регистр последовательных приближений. Он представляет собой сдвигающий регистр, в котором последовательно, начиная со старшего разряда, формируется логическая единица. В зависимости от сигнала Uупр, поступающего на его вход, эта единица или остается, или заменяется логическим “0”. Резистивная матрица формирует аналоговое напряжение, эквивалентное “весу” цифрового кода, поступающего на матрицу с регистра приближений. Схема сравнения сравнивает напряжения Ux и Uм, и в зависимости от их величин формирует сигнал Uупр. на уровне лог."0" или лог."1" .
Рассмотрим пример:
Пусть Ux=7в, а U0=10в, тогда в первом такте в старшем n разряде регистра формируется лог."1" и Uм=5в, Uм< Ux; Uупр.=1. Следовательно, в старшем разряде остается лог."1".
Во втором такте, в следующем n-1 разряде формируется лог."1" и Uм=5в+2,5в=7,5в; Uм> Ux; Uупр.=0. Следовательно, единица в n-1 разряде заменяется на лог."0" и Uм=5в.
В третьем такте в разряд n-2 регистра записывается лог."1" и Uм=5в+1,25в=6,25в, Uм< Ux; Uупр.=1. Следовательно, лог."1" в n-2 разряда остается.
В четвертом такте в разряд n-3 регистра записывается лог."1" и Uм=5+1,25+0,625=6,875в, Uм< Ux; Uупр.=1. Следовательно, лог."1" остается в разряде n-3.
Процесс преобразования повторяется n тактов, в результате с регистра приближений снимается код преобразованной аналоговой величины.
АЦП поразрядного взвешивания нашли широкое применение при разработке ИС ввиду своей простоты и достаточно хорошего быстродействия. Такие ИС могут иметь в своем составе генератор тактовых импульсов и источник эталонного напряжения или не иметь их.
В
качестве примера рассмотрим АЦП,
выполненное на ИС К1113ПВ1.
ИС предназначена для преобразования однополярного или биполярного аналогового напряжения (Uвх=0 10в или Uвх= -5в +5в) в десятиразрядный двоичный код. Нелинейность преобразования 0,1%, время преобразования 30мкс. Для работы ИС требуется два источника питания +5в и –15в.
В микросхему встроен внутренний источник опорного напряжения и генератор тактовых импульсов.
Запуск АЦП производится лог."0". Цифровая информация с выходных шин снимается через 30мкс после поступления сигнала “Гашение-преобразование”. Tпреобр.=30 мкс. Работа АЦП поясняется временной диаграммой его работы (рис. 168, б)
Следящие АЦП в отличие от АЦП поразрядного взвешивания имеют в своем составе вместо регистра последовательных приближений реверсивный счетчик.
Р
абота
АЦП поясняется временной диаграммой
работы (Рис.169). Управление реверсивным
счетчиком производится по управляющей
шине “”
в зависимости от соотношения сигналов
Ux
и Uм.
При изменении входного сигнала Ux
изменяется код реверсивного счетчика
и напряжение с матрицы Uм
“следит” за Ux.