
- •1.1 Введение.
- •1.2.Предмет гидравлики
- •1.3. Силы, действующие на жидкость.
- •1.4.Давление жидкости.
- •1.5.Абсолютное и избыточное давление. Разряжение.
- •1.6.Использование пьезометра.
- •1.7.Единицы измерения.
- •1.8. Пример гидравлической системы.
- •Рекомендуемая литература.
- •2.1. Свойства капельных жидкостей: плотность и вязкость, единицы измерения.
- •2.2. Свойства капельных жидкостей: сжимаемость,
- •2.3. Основные свойства газов
- •2.1. Основные свойства капельных жидкостей
- •3. Вязкость жидкости.
- •2.3. Основные свойства газов
- •3. Гидростатика-1
- •3.1А. Закон Паскаля. Свойство гидростатического давления в точке.
- •3.2.Основное уравнения гидростатики
- •3.3. Дифференциальные уравнения равновесия жидкости и их интегрирование для простейшего случая Эйлера.
- •3.4. Пьезометрическая высота.
- •3.5. Вакуум.
- •3.5.1. Измерение вакуума
- •3.6. Приборы для измерения давления.
- •3.6.1 Схемы жидкостных манометров.
- •3.6.7. Манометры с упругим чувствительным элементом.
- •4. Гидростатика-2
- •4.2. Точка приложения силы давления.
- •4.3 Сила давления жидкости на криволинейную стенку.
- •4.4. Плавание тел.
- •4.5. Прямолинейное равноускоренное движение сосуда с жидкостью.
- •4.6. Равномерное вращение сосуда с жидкостью
- •5. Кинематика и динамика идеальной жидкости-1
- •5.2. Расход. Уравнение расхода
- •5.3 Уравнение неразрывности потока.
- •5.4. Уравнение Бернулли для элементарной струйки идеальной жидкости
- •5.5.Первая форма уравнения Бернулли
- •5.6. Вторая форма уравнения Бернулли.
- •5.7. Третья форма уравнения Бернулли.
- •5.8. Вывод дифференциальных уравнений движения идеальной жидкости и их интегрирование (уравнений Эйлера).
- •6. Кинематика и динамика реальной жидкости-2
- •6.2. Мощность потока
- •6.3 Коэффициент Кориолиса
- •6.4 Гидравлические потери .
- •6.5.Местные потери
- •6.6. Потери энергии на трение по длине
- •6.6. Применение уравнения Бернулли в технике
- •7. Истечение жидкости через отверстия и насадки при постоянном напоре.
- •8.1. Истечение через отверстия при постоянном напоре .
- •8.2. Истечение при совершенном сжатии. Скорость истечения реальной жидкости.
- •Коэффициент скорости при совершенном сжатии
- •8.3. Коэффициенты:ε, ζ, φ, μ
- •8.4. Истечение при несовершенном сжатии
- •8.5. Истечение под уровень
- •8.5. Истечение через насадки при постоянном напоре.
- •7. Местные гидравлические сопротивления
- •9.2. Внезапное расширение трубопровода
- •9.3. Потери энергии при выходе из трубы в резервуар.
- •9.3. Постепенное расширение трубы
- •9.4. Внезапное сужение трубопровода
- •9.5. Потери энергии при выходе из резервуара в трубу.
- •9.6. Потери энергии при постепенном сужении трубы - конфузор.
- •9.7.Поворот трубы
- •9.8. Коэффициенты местных сопротивлений.
- •9. Теория ламинарного течения в круглой трубе
- •10.2. Формула Вейсбаха-Дарси. Коэффициент Бусинеска
- •10.3. Начальный участок ламинарного течения
- •10.4. Ламинарное течение в зазоре
- •10.5. Ламинарное течение в зазоре. Случай подвижных стенок.
- •10.6. Ламинарное течение в зазоре. Случай концентрических зазоров.
- •10.7. Особые случаи ламинарного течения. Течение е теплообменом
- •10.8. Течение при больших перепадах давления.
- •10.9. Течение с облитерацией.
- •11. Турбулентное течение
- •11.2. Основные сведения о турбулентном режиме течения жидкости. Эпюры скоростей. Относительная шероховатость.
- •11.2. Коэффициент сопротивления трения по длине трубопровода при турбулентном потоке.
- •11.3 Турбулентное течение в области гидравлически гладких труб.
- •11.4. Турбулентное течение в области в шероховатых труб. Относительная шероховатость.
- •11.5 Опыты Никурадзе
- •11.6. Реальные шероховатые трубы. Опыты Мурина и теплотехнического института.
- •11.7. Турбулентное течение в некруглых трубах
- •11. Гидравлический расчет простых трубопроводов
- •12.2.Простой трубопровод между двумя резервуарами.
- •12.3. Простой трубопровод при истечении в атмосферу.
- •12.4.Сифонный трубопровод. Вакуум на участке трубопровода.
- •12.5. Использование приблизительных зависимостей при расчете простого трубопровода. Замена местных сопротивлений.
- •12.6 Определение коэффициентов трения в зависимости от режима течения жидкости.
- •12.6. Три задачи на расчет простого трубопровода.
- •12.7 Построение диаграмм напоров в трубопроводе
- •12. Расчет сложных трубопроводов – 1-я часть.
- •13.2. Допущения для решения систем уравнений:
- •13.3. Сложный трубопровод с параллельными ветвями.
- •13.4. Аналитический метод решения системы уравнений для трубопровода с заданными размерами.
- •Для трубопровода с заданными размерами.
- •13.5.1.Методика построения характеристики разветвленного(эквивалентного) участка.
- •13.5.2. Методика построения характеристики сложного трубопровода
- •13.6. Трубопроводы с концевой раздачей. Задача о трех резервуарах.
- •13.6.1.Аналитический метод решения "задачи о трех резервуарах"
- •13.6.1.1.Пример решения задачи аналитическим методом.
- •13.6.2. Графический метод решения "задачи о трех резервуарах".
- •13.7. Трубопроводы с непрерывной раздачей.
- •13. Работа насосов на сеть.
- •14. 2. Статический напор установки.
- •14.3. Потребный напор насосной установки.
- •14.4. Характеристика насоса.
- •14.5.Вакуум во всасывающей линии.
- •14.6. Работа насоса на сеть. Определение рабочей точки.
- •1. Начало координат q— н располагают на пьезометрическом уровне в приемном (питающем) резервуаре, этот уровень выбирается за начало отсчета напоров.
- •14.7. Регулирование подачи насоса.
- •14.7.1. Регулирование подачи методом изменения частоты вращения насоса
- •14.7.1. Регулирование подачи насосной установки методом дросселирования.
- •14.9. Регулирование подачи с использованием обводной линии.
- •14.8. Задачи о работе насоса на сложный (разветвленный) трубопровод.
- •14.9. Работа параллельных насосов и последовательно соединенных насосов на простой трубопровод.
- •14.10. Особенности работы на сеть насосов объемного типа.
- •14. Лопастные насосы.
- •15.1. Подача, напор и мощность насоса
- •15.2 Рабочий процесс лопастного насоса
- •15.3. Баланс энергии в лопастном насосе.
- •15.4.Характеристика насосной установки. Работа насоса на сеть
14. Лопастные насосы.
15.1. Подача, напор и мощность насоса
15.2 Рабочий процесс лопастного насоса
15.3. Баланс энергии в лопастном насосе.
15.4.Характеристика насосной установки. Работа насоса на сеть
Насосаминазываются гидравлическими машины,передающиежидкости механическую энергию от приводных двигателей.
Гидродвигателяминазываются гидравлические машины,получающиеот жидкости энергию, переданную ей насосами, преобразующие и передающие ее рабочему органу.
Гидропередачами или гидроприводаминазывают комплекс устройств, в которых выполняется преобразование вида движения и скорости рабочего органа. Гидропередача состоит из насоса, гидродвигателя, распределительных и предохранительных устройств.
Гидропередачи выполняют функции аналогичные механическим передачам (муфтам, коробкам скоростей, редукторам и т. д.) и имеют перед механическими передачами преимущества:
1. Большая плавность работы: люфты и неточности изготовления механических передач вызывают вибрации. Включение и выключение механических передач и изменение ее передаточного числа сопровождается динамическими явлениями(толчками), эти явления сглаживаются за счет упругости жидкости.
2. Возможность бесступенчатого изменения передаточного числа.
3. Высокие удельные показатели, отношение мощности к массе.
5.Высокая надежность.
Эти преимущества привели к большому распространению гидропередач.
В объемных гидромашинах (поршневых, шестеренных, аксиально-поршневых) имеется замкнутый объем (рабочая камера). Энергия от приводного двигателя передается в насосе замкнутому объему жидкости, этот объем вытесняется в напорную линию. Давление в вытесняемом объеме создается нагрузкой. В гидродвигателях жидкость под давлением поступает в рабочую камеру и создает момент на валу гидромотора или усилие на штоке гидроцилиндра.
В лопастных машинах механическая энергия передается лопаткам рабочего колеса, лопатки динамически воздействуют на поток жидкости. Рабочее колесо лопастной машины, снабженное лопастями, является его рабочим органом.
На рис.15.1 изображена простейшая схема центробежного насоса.
Насос имеет проточную часть, состоящую из подвода - 1, рабочего колеса - 2 и отвода - 3. По подводу жидкость подается в рабочее колесо из подводящего трубопровода. Назначением рабочего колеса является передача жидкости энергии от двигателя. Рабочее колесо центробежного насоса состоит из дисков, между которыми находятся лопатки, изогнутые в сторону противоположную направлению вращения колеса. Рабочее колесо крепится на валу. Направление движения жидкости через колесо из центральной его части к периферии. По отводу жидкость от рабочего колеса движется к напорному патрубку, а в многоступенчатых насосах, к следующему колесу.
Лопастными гидродвигателями являются гидротурбины. Радиально-осевая гидротурбина и центробежный насос являются обратимыми машинами. Направление движения жидкости в турбине и направление вращения колеса в насосе противоположны.
Лопастные насосы бывают одноступенчатыми и многоступенчатыми. Одноступенчатые имеют одно колесо, многоступенчатые более одного.
В рабочем колесе энергия передается жидкости путем динамическоговоздействия лопаток на поток. Поэтому одно из названий центробежных насосов – динамические насосы.