
- •1.1 Введение.
- •1.2.Предмет гидравлики
- •1.3. Силы, действующие на жидкость.
- •1.4.Давление жидкости.
- •1.5.Абсолютное и избыточное давление. Разряжение.
- •1.6.Использование пьезометра.
- •1.7.Единицы измерения.
- •1.8. Пример гидравлической системы.
- •Рекомендуемая литература.
- •2.1. Свойства капельных жидкостей: плотность и вязкость, единицы измерения.
- •2.2. Свойства капельных жидкостей: сжимаемость,
- •2.3. Основные свойства газов
- •2.1. Основные свойства капельных жидкостей
- •3. Вязкость жидкости.
- •2.3. Основные свойства газов
- •3. Гидростатика-1
- •3.1А. Закон Паскаля. Свойство гидростатического давления в точке.
- •3.2.Основное уравнения гидростатики
- •3.3. Дифференциальные уравнения равновесия жидкости и их интегрирование для простейшего случая Эйлера.
- •3.4. Пьезометрическая высота.
- •3.5. Вакуум.
- •3.5.1. Измерение вакуума
- •3.6. Приборы для измерения давления.
- •3.6.1 Схемы жидкостных манометров.
- •3.6.7. Манометры с упругим чувствительным элементом.
- •4. Гидростатика-2
- •4.2. Точка приложения силы давления.
- •4.3 Сила давления жидкости на криволинейную стенку.
- •4.4. Плавание тел.
- •4.5. Прямолинейное равноускоренное движение сосуда с жидкостью.
- •4.6. Равномерное вращение сосуда с жидкостью
- •5. Кинематика и динамика идеальной жидкости-1
- •5.2. Расход. Уравнение расхода
- •5.3 Уравнение неразрывности потока.
- •5.4. Уравнение Бернулли для элементарной струйки идеальной жидкости
- •5.5.Первая форма уравнения Бернулли
- •5.6. Вторая форма уравнения Бернулли.
- •5.7. Третья форма уравнения Бернулли.
- •5.8. Вывод дифференциальных уравнений движения идеальной жидкости и их интегрирование (уравнений Эйлера).
- •6. Кинематика и динамика реальной жидкости-2
- •6.2. Мощность потока
- •6.3 Коэффициент Кориолиса
- •6.4 Гидравлические потери .
- •6.5.Местные потери
- •6.6. Потери энергии на трение по длине
- •6.6. Применение уравнения Бернулли в технике
- •7. Истечение жидкости через отверстия и насадки при постоянном напоре.
- •8.1. Истечение через отверстия при постоянном напоре .
- •8.2. Истечение при совершенном сжатии. Скорость истечения реальной жидкости.
- •Коэффициент скорости при совершенном сжатии
- •8.3. Коэффициенты:ε, ζ, φ, μ
- •8.4. Истечение при несовершенном сжатии
- •8.5. Истечение под уровень
- •8.5. Истечение через насадки при постоянном напоре.
- •7. Местные гидравлические сопротивления
- •9.2. Внезапное расширение трубопровода
- •9.3. Потери энергии при выходе из трубы в резервуар.
- •9.3. Постепенное расширение трубы
- •9.4. Внезапное сужение трубопровода
- •9.5. Потери энергии при выходе из резервуара в трубу.
- •9.6. Потери энергии при постепенном сужении трубы - конфузор.
- •9.7.Поворот трубы
- •9.8. Коэффициенты местных сопротивлений.
- •9. Теория ламинарного течения в круглой трубе
- •10.2. Формула Вейсбаха-Дарси. Коэффициент Бусинеска
- •10.3. Начальный участок ламинарного течения
- •10.4. Ламинарное течение в зазоре
- •10.5. Ламинарное течение в зазоре. Случай подвижных стенок.
- •10.6. Ламинарное течение в зазоре. Случай концентрических зазоров.
- •10.7. Особые случаи ламинарного течения. Течение е теплообменом
- •10.8. Течение при больших перепадах давления.
- •10.9. Течение с облитерацией.
- •11. Турбулентное течение
- •11.2. Основные сведения о турбулентном режиме течения жидкости. Эпюры скоростей. Относительная шероховатость.
- •11.2. Коэффициент сопротивления трения по длине трубопровода при турбулентном потоке.
- •11.3 Турбулентное течение в области гидравлически гладких труб.
- •11.4. Турбулентное течение в области в шероховатых труб. Относительная шероховатость.
- •11.5 Опыты Никурадзе
- •11.6. Реальные шероховатые трубы. Опыты Мурина и теплотехнического института.
- •11.7. Турбулентное течение в некруглых трубах
- •11. Гидравлический расчет простых трубопроводов
- •12.2.Простой трубопровод между двумя резервуарами.
- •12.3. Простой трубопровод при истечении в атмосферу.
- •12.4.Сифонный трубопровод. Вакуум на участке трубопровода.
- •12.5. Использование приблизительных зависимостей при расчете простого трубопровода. Замена местных сопротивлений.
- •12.6 Определение коэффициентов трения в зависимости от режима течения жидкости.
- •12.6. Три задачи на расчет простого трубопровода.
- •12.7 Построение диаграмм напоров в трубопроводе
- •12. Расчет сложных трубопроводов – 1-я часть.
- •13.2. Допущения для решения систем уравнений:
- •13.3. Сложный трубопровод с параллельными ветвями.
- •13.4. Аналитический метод решения системы уравнений для трубопровода с заданными размерами.
- •Для трубопровода с заданными размерами.
- •13.5.1.Методика построения характеристики разветвленного(эквивалентного) участка.
- •13.5.2. Методика построения характеристики сложного трубопровода
- •13.6. Трубопроводы с концевой раздачей. Задача о трех резервуарах.
- •13.6.1.Аналитический метод решения "задачи о трех резервуарах"
- •13.6.1.1.Пример решения задачи аналитическим методом.
- •13.6.2. Графический метод решения "задачи о трех резервуарах".
- •13.7. Трубопроводы с непрерывной раздачей.
- •13. Работа насосов на сеть.
- •14. 2. Статический напор установки.
- •14.3. Потребный напор насосной установки.
- •14.4. Характеристика насоса.
- •14.5.Вакуум во всасывающей линии.
- •14.6. Работа насоса на сеть. Определение рабочей точки.
- •1. Начало координат q— н располагают на пьезометрическом уровне в приемном (питающем) резервуаре, этот уровень выбирается за начало отсчета напоров.
- •14.7. Регулирование подачи насоса.
- •14.7.1. Регулирование подачи методом изменения частоты вращения насоса
- •14.7.1. Регулирование подачи насосной установки методом дросселирования.
- •14.9. Регулирование подачи с использованием обводной линии.
- •14.8. Задачи о работе насоса на сложный (разветвленный) трубопровод.
- •14.9. Работа параллельных насосов и последовательно соединенных насосов на простой трубопровод.
- •14.10. Особенности работы на сеть насосов объемного типа.
- •14. Лопастные насосы.
- •15.1. Подача, напор и мощность насоса
- •15.2 Рабочий процесс лопастного насоса
- •15.3. Баланс энергии в лопастном насосе.
- •15.4.Характеристика насосной установки. Работа насоса на сеть
11.2. Коэффициент сопротивления трения по длине трубопровода при турбулентном потоке.
Основной расчетной формулой для потерь напора при турбулентном течении в круглых трубах является эмпирическая формула Вейсбаха— Дарси
‚
где λт- коэффициент потерь на трение при турбулентном течении, или коэффициент Дарси.
При турбулентном течении потеря напора на трение пропорциональна скорости во второй степени, а коэффициент потерь на трение в формуле для данной трубы можно считать величиной постоянной.
11.3 Турбулентное течение в области гидравлически гладких труб.
Для практических расчетов потерь, связанных с турбулентным течением жидкостей в трубах были проведены экспериментальные исследования, и установлено, что коэффициент λтзависит от сочетания двух факторов: неровностей в трубе и числа Рейнольдса.
На графике функциональных зависимостей, связывающих коэффициент λ, неровности в трубе и число Reвыделены две области: область гидравлически гладких труб и область гидравлически шероховатых труб.
Труба называется гидравлически гладкой, когда ее шероховатость не влияет на коэффициент λт и соответственно на сопротивление потоку.
К гидравлически гладким трубам можно отнести цельнотянутые трубы из цветных металлов, включая и алюминиевые сплавы, а также высококачественные бесшовные стальные трубы. Такие трубы применяются в топливопроводах и гидросистемах. Водопроводные стальные и чугунные трубы гидравлически гладкими не считают.
В области гидравлически гладких труб при турбулентном течении в эмпирические зависимости для коэффициента λт, как и для ламинарного движения входит только число Рейнольдса:
λт=f(Re).
Основную роль в образовании потерь энергии при турбулентном течении играет перемешивание и рассеивание кинетической энергии завихренных частиц.
Исследования турбулентного течения жидкости при небольших скоростях в области гидравлически гладких труб показали, что на стенке трубы образуется ламинарный подслой (рис.11.5). Это тонкий слой жидкости, движение в котором является слоистым и происходит без перемешивания. В его пределах скорость растет от нуля на стенке до некоторой величины Vл на границе слоя. Толщинаδл ламинарного слоя невелика, причем оказывается, что числоRe, подсчитанное по толщине δл, скоростиVл и кинематической вязкостиν, есть величина постоянная, как постоянноReкрдля течения в трубах.
Re = Vл δл/ν= const
При увеличении скорости потока толщина δлламинарного слоя уменьшается.
11.4. Турбулентное течение в области в шероховатых труб. Относительная шероховатость.
Труба называется гидравлически шероховатой, когда на ее внутренней поверхности ламинарный подслой мал или отсутствует.
Относительной шероховатостью называется отношение ∆/d, где ∆ - средняя высота бугорков неровностей (шероховатостей) внутри трубы,d— диаметр трубы.
Одинаковая абсолютная шероховатость может совершенно не оказывать влияния на сопротивление трубы большого диаметра, но значительно влияет на сопротивление трубы малого диаметра.
Если все бугорки шероховатости имеют один и тот же размер ∆ и одинаковую форму, такая шероховатость называется равномерно распределенной зернистой шероховатостью.
Область "гидравлически шероховатых труб" состоит из двух частей.
В первой части λтзависит от числаReи от шероховатости внутренней поверхности трубы, выраженной в виде относительной величины
λт =f(Re,∆/d)
Во второй части λТзависит только от шероховатости внутренней поверхности трубы
λт = f(∆/d),