
- •1.1 Введение.
- •1.2.Предмет гидравлики
- •1.3. Силы, действующие на жидкость.
- •1.4.Давление жидкости.
- •1.5.Абсолютное и избыточное давление. Разряжение.
- •1.6.Использование пьезометра.
- •1.7.Единицы измерения.
- •1.8. Пример гидравлической системы.
- •Рекомендуемая литература.
- •2.1. Свойства капельных жидкостей: плотность и вязкость, единицы измерения.
- •2.2. Свойства капельных жидкостей: сжимаемость,
- •2.3. Основные свойства газов
- •2.1. Основные свойства капельных жидкостей
- •3. Вязкость жидкости.
- •2.3. Основные свойства газов
- •3. Гидростатика-1
- •3.1А. Закон Паскаля. Свойство гидростатического давления в точке.
- •3.2.Основное уравнения гидростатики
- •3.3. Дифференциальные уравнения равновесия жидкости и их интегрирование для простейшего случая Эйлера.
- •3.4. Пьезометрическая высота.
- •3.5. Вакуум.
- •3.5.1. Измерение вакуума
- •3.6. Приборы для измерения давления.
- •3.6.1 Схемы жидкостных манометров.
- •3.6.7. Манометры с упругим чувствительным элементом.
- •4. Гидростатика-2
- •4.2. Точка приложения силы давления.
- •4.3 Сила давления жидкости на криволинейную стенку.
- •4.4. Плавание тел.
- •4.5. Прямолинейное равноускоренное движение сосуда с жидкостью.
- •4.6. Равномерное вращение сосуда с жидкостью
- •5. Кинематика и динамика идеальной жидкости-1
- •5.2. Расход. Уравнение расхода
- •5.3 Уравнение неразрывности потока.
- •5.4. Уравнение Бернулли для элементарной струйки идеальной жидкости
- •5.5.Первая форма уравнения Бернулли
- •5.6. Вторая форма уравнения Бернулли.
- •5.7. Третья форма уравнения Бернулли.
- •5.8. Вывод дифференциальных уравнений движения идеальной жидкости и их интегрирование (уравнений Эйлера).
- •6. Кинематика и динамика реальной жидкости-2
- •6.2. Мощность потока
- •6.3 Коэффициент Кориолиса
- •6.4 Гидравлические потери .
- •6.5.Местные потери
- •6.6. Потери энергии на трение по длине
- •6.6. Применение уравнения Бернулли в технике
- •7. Истечение жидкости через отверстия и насадки при постоянном напоре.
- •8.1. Истечение через отверстия при постоянном напоре .
- •8.2. Истечение при совершенном сжатии. Скорость истечения реальной жидкости.
- •Коэффициент скорости при совершенном сжатии
- •8.3. Коэффициенты:ε, ζ, φ, μ
- •8.4. Истечение при несовершенном сжатии
- •8.5. Истечение под уровень
- •8.5. Истечение через насадки при постоянном напоре.
- •7. Местные гидравлические сопротивления
- •9.2. Внезапное расширение трубопровода
- •9.3. Потери энергии при выходе из трубы в резервуар.
- •9.3. Постепенное расширение трубы
- •9.4. Внезапное сужение трубопровода
- •9.5. Потери энергии при выходе из резервуара в трубу.
- •9.6. Потери энергии при постепенном сужении трубы - конфузор.
- •9.7.Поворот трубы
- •9.8. Коэффициенты местных сопротивлений.
- •9. Теория ламинарного течения в круглой трубе
- •10.2. Формула Вейсбаха-Дарси. Коэффициент Бусинеска
- •10.3. Начальный участок ламинарного течения
- •10.4. Ламинарное течение в зазоре
- •10.5. Ламинарное течение в зазоре. Случай подвижных стенок.
- •10.6. Ламинарное течение в зазоре. Случай концентрических зазоров.
- •10.7. Особые случаи ламинарного течения. Течение е теплообменом
- •10.8. Течение при больших перепадах давления.
- •10.9. Течение с облитерацией.
- •11. Турбулентное течение
- •11.2. Основные сведения о турбулентном режиме течения жидкости. Эпюры скоростей. Относительная шероховатость.
- •11.2. Коэффициент сопротивления трения по длине трубопровода при турбулентном потоке.
- •11.3 Турбулентное течение в области гидравлически гладких труб.
- •11.4. Турбулентное течение в области в шероховатых труб. Относительная шероховатость.
- •11.5 Опыты Никурадзе
- •11.6. Реальные шероховатые трубы. Опыты Мурина и теплотехнического института.
- •11.7. Турбулентное течение в некруглых трубах
- •11. Гидравлический расчет простых трубопроводов
- •12.2.Простой трубопровод между двумя резервуарами.
- •12.3. Простой трубопровод при истечении в атмосферу.
- •12.4.Сифонный трубопровод. Вакуум на участке трубопровода.
- •12.5. Использование приблизительных зависимостей при расчете простого трубопровода. Замена местных сопротивлений.
- •12.6 Определение коэффициентов трения в зависимости от режима течения жидкости.
- •12.6. Три задачи на расчет простого трубопровода.
- •12.7 Построение диаграмм напоров в трубопроводе
- •12. Расчет сложных трубопроводов – 1-я часть.
- •13.2. Допущения для решения систем уравнений:
- •13.3. Сложный трубопровод с параллельными ветвями.
- •13.4. Аналитический метод решения системы уравнений для трубопровода с заданными размерами.
- •Для трубопровода с заданными размерами.
- •13.5.1.Методика построения характеристики разветвленного(эквивалентного) участка.
- •13.5.2. Методика построения характеристики сложного трубопровода
- •13.6. Трубопроводы с концевой раздачей. Задача о трех резервуарах.
- •13.6.1.Аналитический метод решения "задачи о трех резервуарах"
- •13.6.1.1.Пример решения задачи аналитическим методом.
- •13.6.2. Графический метод решения "задачи о трех резервуарах".
- •13.7. Трубопроводы с непрерывной раздачей.
- •13. Работа насосов на сеть.
- •14. 2. Статический напор установки.
- •14.3. Потребный напор насосной установки.
- •14.4. Характеристика насоса.
- •14.5.Вакуум во всасывающей линии.
- •14.6. Работа насоса на сеть. Определение рабочей точки.
- •1. Начало координат q— н располагают на пьезометрическом уровне в приемном (питающем) резервуаре, этот уровень выбирается за начало отсчета напоров.
- •14.7. Регулирование подачи насоса.
- •14.7.1. Регулирование подачи методом изменения частоты вращения насоса
- •14.7.1. Регулирование подачи насосной установки методом дросселирования.
- •14.9. Регулирование подачи с использованием обводной линии.
- •14.8. Задачи о работе насоса на сложный (разветвленный) трубопровод.
- •14.9. Работа параллельных насосов и последовательно соединенных насосов на простой трубопровод.
- •14.10. Особенности работы на сеть насосов объемного типа.
- •14. Лопастные насосы.
- •15.1. Подача, напор и мощность насоса
- •15.2 Рабочий процесс лопастного насоса
- •15.3. Баланс энергии в лопастном насосе.
- •15.4.Характеристика насосной установки. Работа насоса на сеть
5.5.Первая форма уравнения Бернулли
Разделим это уравнение на δG - изменение силы тяжести элементарной струйки за времяδt, (см. формулу (5.8) , и произведя сокращения на
δG = ρ*g* V1*δS1*δt = ρ*g* V2*δS2*δt, получим
Сгруппировав члены, относящиеся к первому сечению, в левой части уравнения, а члены, относящиеся ко второму сечению, в правой, получим
Писать!"Уравнение Бернулли для элементарной струйки идеальной несжимаемой жидкости (первая форма уравнения Бернулли)":
(5.12)
где z- геометрический напор,
Р/ρg- пьезометрический напор,
V2/2g- скоростной напор.
Это уравнение полного напора, так как члены, входящие в него имеют размерность длины было выведено Даниилом Бернулли в 1738 г.
Уравнение Бернулли (5.12) записано для двух произвольно взятых сечении струйки и выражает равенство полных напоров Нв этих сечениях. Так как сечения взяты произвольно, следовательно, и для любого другого сечения этой же струйки полный напор будет иметь одно и то же значение.
Для идеальной движущейся жидкости вдоль струйки тока сумма трех напоров: геометрического, пьезометрического и скоростного есть величина постоянная.
На рис. 5.4 показано изменение всех напоров вдоль струйки.
Линия изменения уровней жидкости в пьезометрах называется пьезометрической линией.
Поскольку в уравнении Бернулли суммарный напор постоянен, из уравнения расхода следует: при уменьшении площади поперечного сечения струйки, скорость течения жидкости увеличивается и увеличивается скоростной напор, а пьезометрический напор уменьшается, если площадь струйки увеличивается, скорость уменьшается, а пьезометрический напор возрастает.
Например, если площадь поперечного сечения струйки в сечении 1 - 1 больше, чем в сечении 2 - 2 в 4 раза, скоростной напор увеличивается в 16 раз (рис. 5.4).
В сечении 3 - 3 та же площадь, что и сечение 1-1, и скоростные напоры одинаковы.
5.6. Вторая форма уравнения Бернулли.
Разделив исходное уравнение (5.11) на элементарный объем
δW =δQ*δt= δS1V1*δt = δS2V2*δt,
учитывая, что
δG = ρ*g*δW,δW = δG/ρg,
получим p1 - p2 +(z1-z2) * ρ*g = ρ* (V22- V21)/2. или
. (5.13)
Во второй форме члены уравнения Бернулли имеют размерность давления:
ρzg — весовое давление;
р — гидромеханическое давление;
ρv2/2 — динамическое давление.
5.7. Третья форма уравнения Бернулли.
Разделив исходное уравнение (5.11) на массу δm= ρ*g*δWэлементарного объема, равную
δm = ρ*( V1*δS1*δt) = ρ*( V2*δS2*δt)= δWρ = δG/g,аδG= gδm, преобразовав это уравнение, получим
(5.16)
Удельной энергией жидкости, называется отношение энергии жидкости к ее массе.
В третьей форме члены уравнения Бернулли имеют размерность энергии:
gz— удельная потенциальная энергия.
Частица жидкости массой δm, помещенная высотуz, обладает энергией равной (δmg)z, на единицу массы приходится удельная энергия
(δmg)z/δm =gz;
Р/ρ- удельная энергия давления жидкости.
Частица массой δmпри давленииробладает способностью подняться на высотуh = P/ρg, и ее потенциальная энергия увеличится на величину равную (δmg)h = δm(P/ρ), на единицу массы увеличение удельной потенциальной энергии
δm (Р/( ρ) / δm = р/ρ.
Сумма gz + р/ρявляется удельной потенциальной энергией жидкости;
V2/2- удельная кинетическая энергия жидкости.
Кинетическая энергия частицы массой δmравнаδm*V2/2, на единцу массыδm = V2/2.
Сумма Hg = zg+P/ρ+ V2/2 называется полной удельной механической энергией движущейся идеальной жидкости.
Энергетический смысл уравнения Бернулли для элементарной струйки идеальной жидкости заключается в постоянстве вдоль струйки полной удельной энергии жидкости.
Механическая энергия жидкости может иметь три формы: потенциальная энергия, энергия давления и кинетическая энергия.
Первая и третья формы механической энергии известны из механики, они свойственны твердым и жидким телам.
Энергия давления является специфической для движущихся жидкостей.В процессе движения идеальной жидкости одна форма энергии может преобразовываться в другую, однако полная удельная энергия идеальной жидкости при этом как следует из уравнения Бернулли, остается без изменений.
Энергию давления легко преобразовать в механическую работу. Простейшим устройством, с помощью которого осуществляют такое преобразование, является гидроцилиндр (рис. 5.5). При этом преобразовании каждая единица массы жидкости совершает работу, численно равную р/ρ.
Пусть площадь поршня равна s, его ходL, избыточное давление жидкости в левой полости цилиндра, необходимое для преодоления силыR,равнор =R/S, избыточное давление по другую сторону поршня равно нулю. Преодолевая силуRпри перемещении поршня из левого положения, давление совершает работуА = рSL. Расход жидкости, который необходимо подвести к цилиндру для совершения этой работы за времяt, равен объему цилиндра, т. е.Qt=W=SL.Удельная работа, приходящаяся на 1 кг массы,
е = А/m = pSL /( SLρ) = р/ρ.