
- •1.1 Введение.
- •1.2.Предмет гидравлики
- •1.3. Силы, действующие на жидкость.
- •1.4.Давление жидкости.
- •1.5.Абсолютное и избыточное давление. Разряжение.
- •1.6.Использование пьезометра.
- •1.7.Единицы измерения.
- •1.8. Пример гидравлической системы.
- •Рекомендуемая литература.
- •2.1. Свойства капельных жидкостей: плотность и вязкость, единицы измерения.
- •2.2. Свойства капельных жидкостей: сжимаемость,
- •2.3. Основные свойства газов
- •2.1. Основные свойства капельных жидкостей
- •3. Вязкость жидкости.
- •2.3. Основные свойства газов
- •3. Гидростатика-1
- •3.1А. Закон Паскаля. Свойство гидростатического давления в точке.
- •3.2.Основное уравнения гидростатики
- •3.3. Дифференциальные уравнения равновесия жидкости и их интегрирование для простейшего случая Эйлера.
- •3.4. Пьезометрическая высота.
- •3.5. Вакуум.
- •3.5.1. Измерение вакуума
- •3.6. Приборы для измерения давления.
- •3.6.1 Схемы жидкостных манометров.
- •3.6.7. Манометры с упругим чувствительным элементом.
- •4. Гидростатика-2
- •4.2. Точка приложения силы давления.
- •4.3 Сила давления жидкости на криволинейную стенку.
- •4.4. Плавание тел.
- •4.5. Прямолинейное равноускоренное движение сосуда с жидкостью.
- •4.6. Равномерное вращение сосуда с жидкостью
- •5. Кинематика и динамика идеальной жидкости-1
- •5.2. Расход. Уравнение расхода
- •5.3 Уравнение неразрывности потока.
- •5.4. Уравнение Бернулли для элементарной струйки идеальной жидкости
- •5.5.Первая форма уравнения Бернулли
- •5.6. Вторая форма уравнения Бернулли.
- •5.7. Третья форма уравнения Бернулли.
- •5.8. Вывод дифференциальных уравнений движения идеальной жидкости и их интегрирование (уравнений Эйлера).
- •6. Кинематика и динамика реальной жидкости-2
- •6.2. Мощность потока
- •6.3 Коэффициент Кориолиса
- •6.4 Гидравлические потери .
- •6.5.Местные потери
- •6.6. Потери энергии на трение по длине
- •6.6. Применение уравнения Бернулли в технике
- •7. Истечение жидкости через отверстия и насадки при постоянном напоре.
- •8.1. Истечение через отверстия при постоянном напоре .
- •8.2. Истечение при совершенном сжатии. Скорость истечения реальной жидкости.
- •Коэффициент скорости при совершенном сжатии
- •8.3. Коэффициенты:ε, ζ, φ, μ
- •8.4. Истечение при несовершенном сжатии
- •8.5. Истечение под уровень
- •8.5. Истечение через насадки при постоянном напоре.
- •7. Местные гидравлические сопротивления
- •9.2. Внезапное расширение трубопровода
- •9.3. Потери энергии при выходе из трубы в резервуар.
- •9.3. Постепенное расширение трубы
- •9.4. Внезапное сужение трубопровода
- •9.5. Потери энергии при выходе из резервуара в трубу.
- •9.6. Потери энергии при постепенном сужении трубы - конфузор.
- •9.7.Поворот трубы
- •9.8. Коэффициенты местных сопротивлений.
- •9. Теория ламинарного течения в круглой трубе
- •10.2. Формула Вейсбаха-Дарси. Коэффициент Бусинеска
- •10.3. Начальный участок ламинарного течения
- •10.4. Ламинарное течение в зазоре
- •10.5. Ламинарное течение в зазоре. Случай подвижных стенок.
- •10.6. Ламинарное течение в зазоре. Случай концентрических зазоров.
- •10.7. Особые случаи ламинарного течения. Течение е теплообменом
- •10.8. Течение при больших перепадах давления.
- •10.9. Течение с облитерацией.
- •11. Турбулентное течение
- •11.2. Основные сведения о турбулентном режиме течения жидкости. Эпюры скоростей. Относительная шероховатость.
- •11.2. Коэффициент сопротивления трения по длине трубопровода при турбулентном потоке.
- •11.3 Турбулентное течение в области гидравлически гладких труб.
- •11.4. Турбулентное течение в области в шероховатых труб. Относительная шероховатость.
- •11.5 Опыты Никурадзе
- •11.6. Реальные шероховатые трубы. Опыты Мурина и теплотехнического института.
- •11.7. Турбулентное течение в некруглых трубах
- •11. Гидравлический расчет простых трубопроводов
- •12.2.Простой трубопровод между двумя резервуарами.
- •12.3. Простой трубопровод при истечении в атмосферу.
- •12.4.Сифонный трубопровод. Вакуум на участке трубопровода.
- •12.5. Использование приблизительных зависимостей при расчете простого трубопровода. Замена местных сопротивлений.
- •12.6 Определение коэффициентов трения в зависимости от режима течения жидкости.
- •12.6. Три задачи на расчет простого трубопровода.
- •12.7 Построение диаграмм напоров в трубопроводе
- •12. Расчет сложных трубопроводов – 1-я часть.
- •13.2. Допущения для решения систем уравнений:
- •13.3. Сложный трубопровод с параллельными ветвями.
- •13.4. Аналитический метод решения системы уравнений для трубопровода с заданными размерами.
- •Для трубопровода с заданными размерами.
- •13.5.1.Методика построения характеристики разветвленного(эквивалентного) участка.
- •13.5.2. Методика построения характеристики сложного трубопровода
- •13.6. Трубопроводы с концевой раздачей. Задача о трех резервуарах.
- •13.6.1.Аналитический метод решения "задачи о трех резервуарах"
- •13.6.1.1.Пример решения задачи аналитическим методом.
- •13.6.2. Графический метод решения "задачи о трех резервуарах".
- •13.7. Трубопроводы с непрерывной раздачей.
- •13. Работа насосов на сеть.
- •14. 2. Статический напор установки.
- •14.3. Потребный напор насосной установки.
- •14.4. Характеристика насоса.
- •14.5.Вакуум во всасывающей линии.
- •14.6. Работа насоса на сеть. Определение рабочей точки.
- •1. Начало координат q— н располагают на пьезометрическом уровне в приемном (питающем) резервуаре, этот уровень выбирается за начало отсчета напоров.
- •14.7. Регулирование подачи насоса.
- •14.7.1. Регулирование подачи методом изменения частоты вращения насоса
- •14.7.1. Регулирование подачи насосной установки методом дросселирования.
- •14.9. Регулирование подачи с использованием обводной линии.
- •14.8. Задачи о работе насоса на сложный (разветвленный) трубопровод.
- •14.9. Работа параллельных насосов и последовательно соединенных насосов на простой трубопровод.
- •14.10. Особенности работы на сеть насосов объемного типа.
- •14. Лопастные насосы.
- •15.1. Подача, напор и мощность насоса
- •15.2 Рабочий процесс лопастного насоса
- •15.3. Баланс энергии в лопастном насосе.
- •15.4.Характеристика насосной установки. Работа насоса на сеть
5.2. Расход. Уравнение расхода
Расходом называется количество жидкости, протекающее через живое сечение потока в единицу времени.Это количество можно измерить в единицах объема, веса, массы в связи, с чем различают расходы:
Q– объемный, (м3/с);
QG– весовой, (Н/с);
Qm– массовый, (кг/с) .
Для элементарной струйки, имеющей малую площадь сечения, мгновенную скорость принимают одинаковой во всех точках сечения, расход для элементарной струйки:
Объемный - δQ=V*δS, (5.1)
Массовый - δQm=ρV*δS, (5.2)
Весовой - δQG=ρg*δQ, (5.3)
где V- мгновенная скорость в данной точке,δS– площадь сечения струйки.
Для потока конечных размеров в общем случае скорость имеет различное значение в разных точках сечения, поэтому расход равен сумме элементарных расходов струек в данном сечении.
(5.4)
Если использовать среднюю по сечению скорость Vср=Q/S, то средний расход для струйки или потока равен
Qср = Vср*S. (5.5)
5.3 Уравнение неразрывности потока.
Условие неразрывности потока основывается на законе сохранения вещества.
А также на следующих допущениях:
а) трубка тока имеет свойство непроницаемости для внешних, обтекающих ее потоков;
б) предположение о сплошности (неразрывности) среды для установившегося течения несжимаемой жидкости.
На этих основаниях можно утверждать, что объемный расход во всех сечениях элементарной струйки (см. рис.5.2) один и тот же.
Уравнение неразрывности для элементарной струйки (уравнение расхода для элементарной струйки).
δQ = V1 *δS1 = V2 *δS2 →const(вдоль струйки). (5.6) Уравнениенеразрывностидля потока,ограниченного непроницаемыми стенками (уравнение расхода для потока).
Q = Vср1 *S1 = Vср2 *S2 →const(вдоль потока), (5.6’)
где Vср1 , Vср2 - средние скорости.
Из этого уравнения (5.6') следует, что средние скорости в потоке несжимаемой жидкости обратно пропорциональны площадям сечений:
Уравнение расхода (5.6‘) является следствием общего закона сохранения вещества при условии сплошности (неразрывности) течения.
5.4. Уравнение Бернулли для элементарной струйки идеальной жидкости
Установившееся течение идеальной жидкости происходит под действием одной массовой силы — силы тяжести. Для этого случая основное уравнение установившегося течения идеальной жидкости связывает между собой давление в жидкости и скоростьее течения.
Возьмем одну из элементарных струек, составляющих поток, выделим сечениями 1 и2 участок этой струйки произвольной длины (рис.5.3). Пусть площадь первого сечения равнаδS1, скорость в немV1, давлениеP1, а высота от плоскости сравненияZ1. Во втором сеченииδS2, V2 , P2иZ2.
За бесконечно малый отрезок времени δtвыделенный участок струйки переместится в положение 1’ – 2’.
Применим к массе жидкости в объеме участка струйки теорему о кинетической энергии: работа сил, приложенных к телу, равна приращению кинетической энергии этого тела.
На жидкость действуют силы тяжести и силы давления, нормальные к поверхностям сечений рассматриваемого участка струйки.
Используя формулировку теоремы, подсчитаем работу сил давления, сил тяжести и изменение кинетической энергии участка струйки за время δt:
(mV22)/2 - (m V12)/2 = G*( Z2- Z1) = G*h
Работа силы давления в первом сечении положительна, так как направление силы совпадает с направлением перемещения, и выражается как произведение силы p1*δSна путьV1δt:
(p1*δS1)*(V1δt)
Работа силы давления во втором сечении имеет знак минус, так как направление силы противоположно направлению перемещения, и определяется выражением
- (p2*δS2) *(V2δt).
Силы давления, действующие по поверхности струйки, работы не производят, так как они нормальны к перемещениям.
Работа сил давления равна
δA = (p1*δS1) *( V1δt)— (p2*δS2) *(V2δt).(5.7)
Работа силы тяжести равна изменению потенциальной энергии выделенного объема струйки. Из потенциальной энергии жидкости в объеме 1 - 2 вычтем потенциальную энергию жидкости в объеме1’- 2’. При этом энергия промежуточного объема1’- 2сократится, и останется лишь разность энергии элементов1- 1’, 2- 2’.
По уравнению расходов (закон неразрывности) (5.6’) объемы и силы тяжести заштрихованных элементов 1 -1’и2 - 2’равны между собой:
δG = ρ*g* V1*δS1*δt = ρ*g* V2*δS2*δt. (5.8)
Тогда работа силы тяжести выразится как произведение разности высот на силу тяжести δG:
(z1-z2) *δG.(5.9)
Чтобы подсчитать приращение кинетической энергии рассматриваемого участка струйки за время δt, необходимо из кинетической энергии объема1’- 2’вычесть кинетическую энергию объема1 - 2. При вычитании кинетическая энергия промежуточного объема1’ - 2сократится, и останется лишь разность кинетических энергий элементов2 — 2’и1 - 1’, масса каждого из которых равнаδG/g.
Таким образом, приращение кинетической энергии на участке струйки равно
(V22- V12)* δG/(2g), (5.10)
Сложив работу сил давления (см. уравнение 5.7) с работой силы тяжести (5.9) и приравняв эту сумму приращению кинетической энергии (5.10), получим исходное уравнение для трех видов уравнения Бернулли.
(p1*δS1) *( V1δt)— (p2*δS2) *( V2δt) +(z1-z2) *δG=(V22- V21)* δG/(2g). (5.11).
сохранять на доске!