- •Введение в гистологию
- •2. Цитология
- •Структурные компоненты клетки
- •Клеточная оболочка (цитолемма)
- •Транспорт через цитолемму.
- •Органеллы
- •Мембранные органеллы.
- •Немембранные органеллы
- •Органеллы специального назначения
- •Включения
- •3. Ядро
- •Взаимодействие структурных компонентов клетки при синтезе белков и небелковых веществ.
- •Жизненный цикл клетки.
- •Смерть клетки.
- •Деление клеток
- •Действие радиации
- •4. Эмбриология человека -1. Развитие зародыша
- •Этапы эмбриогенеза.
- •5. Ткани. Эпителий. Железы
- •Эпителиальные ткани
- •Покровный эпителий
- •Морфологическая классификация
- •Характеристика различных типов покровного эпителия
- •Железистый эпителий
- •6. Кровь и лимфа. Кроветворение
- •Форменные элементы крови
- •Гемопоэз
- •7. Собственно соединительные ткани
- •Волокнистые соединительные ткани.
- •Плотная волокнистая соединительная ткань
- •Соединительные ткани со специальными свойствами.
- •8. Скелетные соединительные ткани
- •Костная ткань
- •Строение трубчатой кости (кость как орган).
- •Развитие кости в эмбриогенезе (остеогенез)
- •9. Мышечные ткани
- •Гладкая мышечная ткань
- •Поперечнополосатая мышечная ткань
- •10. Нервная ткань -1. Нейроны и нейроглия
- •Внутреннее строение нейронов
- •Аксональный транспорт
- •Нейроглия
- •11. Нервная ткань - II. Нервные волокна и окончания
- •Миелиновые нервные волокна.
- •Безмиелиновые нервные волокна.
- •Нервные окончания
- •Межнейрональные синапсы
- •Синаптическая передача.
- •Рефлекторные дуги
- •12. Частная гистология. Нервная система -1
- •Нервная система
- •Периферическая нервная система
- •Центральная нервная система
- •Спинной мозг
- •Головной мозг
- •Ствол мозга
- •Мозжечок
- •Кора больших полушарий
- •Модульный принцип организации коры мозга
- •Пластичность нервной системы
- •14. Анализаторы -1. Орган обоняния. Орган зрения
- •Орган обоняния
- •Орган зрения
- •15. Органы чувств-2 орган вкуса орган слуха и равновесия
- •Орган вкуса.
- •Орган слуха и равновесия
- •Спиральный (кортиев) орган.
- •Гистофизиология органа слуха.
- •Вестибулярная часть перепончатого лабиринта
- •16. Сердечнососудистая система
- •Артерии
- •Микроциркуляторное русло
- •Лимфатические сосуды.
- •Развитие.
- •17. Органы кроветворения и иммуногенеза
- •Красный костный мозг
- •Тимус (вилочковая железа)
- •Лимфатические узлы
- •Селезенка
- •18. Эндокринная система
- •Гипоталамус.
- •Гипофиз
- •Эпифиз (шишковидная железа)
- •19. Эндокринная система-2. Периферические органы Щитовидная железа
- •Околощитовидные железы
- •Надпочечники
- •20. Пищеварительная система-1. Органы ротовой полости
- •Ротовая полость
- •Твердое и мягкое небо
- •Большие слюнные железы
- •Миндалины
- •21. Глотка. Пищевод. Желудок Глотка
- •Пищевод
- •Желудок
- •13. Кишечник
- •Тонкий кишечник
- •Гистофизиология процессов пищеварения и всасывания в тонком кишечнике.
- •Толстая кишка
- •Червеобразный отросток.
- •Прямая кишка
- •24. Печень. Поджелудочная железа
- •Желчный пузырь
- •Поджелудочная железа
- •25. Кожа и ее производные
- •Производные кожи
- •26. Дыхательная система
- •Носовая полость
- •Гортань
- •27. Мочевыделительная система
- •Мочевыводящие пути.
- •Мочеточники
- •Мочевой пузырь
- •28. Мужская половая система
- •Яички (семенники).
- •Семявыносящие пути
- •Добавочные железы
- •Семенные пузырьки
- •Предстательная железа (простата).
- •Бульбоуретральные (Куперовы) железы
- •Половой член
- •Мужской мочеиспускательный канал (уретра)
- •29. Женская половая система -1
- •Яичники
- •Желтое тело
- •30. Женская половая система-2. Яйцеводы. Маточные трубы
- •Влагалище
- •Наружные половые органы
- •Овариально-менструальный цикл
- •Молочные железы
- •31. Эмбриология человека-2 внезародышевые (провизорные) органы
- •Желточный мешок
- •Аллантоис
- •Плацента
- •Критические периоды развития
Нервные окончания
Все нервные волокна заканчиваются концевыми аппаратами, называемыми нервными окончаниями. По функции они делятся на эффекторные, рецепторные и межнейрональные синапсы.
Нервный импульс в организме человека обычно передаётся с одной нервной клетки на другую или с нейрона на рабочий орган через медиатор, химический посредник. Медиатор взаимодействует со специфическими рецепторами другого нейрона или клеток рабочего органа и через каскад вторичных внутриклеточных посредников меняет функцию другого нейрона или рабочего органа.
Межнейрональные синапсы
Это коммуникационные соединения между нейронами. По расположению различают аксосоматические синапсы (когда аксоны одного нейрона оканчиваются на теле другого нейрона), аксодендритические (аксоны одного нейрона оканчиваются на дендритах другого нейрона) и аксо-аксональные (аксоны одного нейрона заканчиваются на аксонах другого нейрона, обычно тормозя функцию последнего).
Синапсы состоят из двух частей: пресинаптической и постсинаптической. Пресинаптическая часть синапса образована колбовидным расширением аксона с пресинаптической мембраной и содержит синаптические пузырьки со специальными биологически активными химическими веществами, медиаторами (посредниками). Постсинаптическая часть синапса включает в себя участок постсинаптической мембраны воспринимающего нейрона, в которой находятся специфические рецепторы, с которыми взаимодействуют медиаторы. Между пре- и постсинаптическими мембранами находится синаптическая щель шириной 20-30 нм. По химической природе используемого медиатора различают синапсы:
1. Холинергические (медиатор - ацетилхолин).
2. Аминергические (медиаторы — биогенные амины: адреналин, норадреналин, дофамин, серотонин, гистамин и др.).
3. ГАМКергические (медиатор - гаммааминомасляная кислота).
4. Аминокислотергические (медиаторы - аминокислоты: глутамат, аспартат).
5. Пептидергические (медиаторы - пептиды).
6. Пуринергические (пуриновые нуклеотиды)
Пресинаптические нейроны, образующие синапсы и синтезирующие и выделяющее эти медиаторы, называются, соответственно, холинергическими, аминергическими, ГАМКергическими, и др. Постсинаптические нейроны с рецепторами к этим медиаторам называются, соответственно, холино-, амино-, или ГАМК-реактивными
Синаптическая передача.
Это сложный каскад событий, включающий в себя следующие этапы: синтез нейромедиатора, его накопление и хранение в синаптических пузырьках вблизи пресинаптической мембраны, высвобождение нейромедиатора в синаптическую щель, кратковременное взаимодействие нейромедиатора с рецептором, встроенным в постсинаптическую мембрану, разрушение нейромедиатора или обратный захват его пресинаптической мембраной.
Многие наркотики (кокаин, амфетамин) и психотропные лекарственные препараты действуют через системы захвата нейромедиаторов. При некоторых нервно-психических заболеваниях нарушается синтез белков-транспортёров.
Рецепторы к нейромедиаторам – это специальные белки, расположенные е постсинаптической мембране. Они бывают двух типов: связанные с ионными каналами и не связанные с ними. Рецепторы, связанные с ионными каналами, опосредуют быстрые постсинаптические эффекты, проявляющиеся в течение нескольких миллисекунд. Ацетилхолин, аспартат, АТФ и глутамат открывают катионные каналы (для ионов Na), что ведет к возникновению быстрых возбудительных постсинаптических потенциалов. ГАМК и глицин открывают анионные каналы (для ионов Cl) и в результате возникают быстрые тормозные постсинаптические потенциалы.
Рецепторы, не связанные с ионными каналами, опосредуют медленные, но продолжительные эффекты нейромедиаторов (лежат в основе обучения и памяти). Они сопряжены с ферментами, которые в присутствии нейромедиатора катализируют образование внутриклеточного посредника (вторичного медиатора), например, ЦАМФ (циклического аденозинмонофосфата) В свою очередь, этот посредник вызывает целый каскад молекулярных сдвигов вызывающих изменения в постсинаптической клетке, в том числе модификацию ионных каналов в клеточной мембране.
Процесс синаптической передами в динамике протекает, следующим образом. Когда, проходящая по аксону волна возбуждения (нервный импульс) достигает синапса, открываются находящиеся в пресинаптической мембране Са2+ каналы. При этом ионы Са2+, входят в пресинаптическую часть синапса и стимулируют экзоцитоз нейромедиатора. В результате этого пресинаптические пузырьки сливаются с пресинаптической мембраной, медиатор высвобождается в синаптическую щель и воздействует на рецепторы постсинаптической мембраны. После этого в постсинаптическом нейроне запускается описанный выше каскад биохимических реакций, меняющий его функцию и вызывающий его возбуждение или торможение.
Тем временем, очень быстро (в течение нескольких мс), медиатор в синаптической щели разрушается специальными ферментами, находящимися в постсинаптической мембране. Продукты распада медиатора захватываются пресинаптическим нейроном, где происходит быстрый ресинтез медиатора и вновь накопление его в синаптических пузырьках.
Многие неврологические и психические заболевания развиваются в результате нарушения синаптической передачи. Целый ряд химических веществ и лекарственных препаратов влияют на синаптическую передачу (психотропные, психофармакологические средства).
Эффекторные нервные окончания Эффекторные нервные окончания передают нервные импульсы от эффекторных нейронов рабочим органам (мышцы, железы). Соответственно, нейроны бывают двух типов - двигательные и секреторные.
Двигательные нервные окончания - концевые аппараты двигательных нейронов (мотонейронов), которые оканчиваются на мышце. Двигательные окончания в поперечнополосатых мышцах называются нервно-мышечными окончаниями. Они состоят из концевого ветвления осевого цилиндра нервного волокна (пресинаптическая часть) и специализированного участка мышечного волокна (постсинаптическая часть). Миелиновое нервное волокно, подойдя к мышечному волокну, теряет миелиновую оболочку и погружается в мышечное волокно, вдавливая его сарколемму. Плазмолемма, покрывающая ветвления аксона, является пресинаптической мембраной, а сарколемма, покрывающая в этом участке мышечное волокно, становится постсинаптической мембраной. Между ними расположена синаптическая щель шириной около 50 нм. В терминальных ветвлениях аксона расположены многочисленные синаптические пузырьки, содержащие медиатор ацетилхолин. При прохождении по аксону нервного импульса ацетилхолин выделяется в синаптическую щель и действует на холинорецепторы постсинаптической мембраны. Это вызывает деполяризацию постсинаптической мембраны, которая передается по Т-трубочкам на всю толщину мышечное волокно и достигает цистерн саркоплазматической сети. Из них выделяются ионы кальция, под действием которых происходит взаимодействие между актиновыми и миозиновыми нитями и сокращение мышечного волокна. После этого ацетилхолин быстро разрушается ферментом ацетилхолинэстеразой, расположенной а постсинаптической мембране.
Двигательные нервные окончания на клетках гладкомышечной ткани представляют собой многочисленные четкообразные (варикозные) утолщения аксонов мотонейронов, содержащие пресинаптические пузырьки с ацетилхолином или норадреналином. Здесь нет ограниченных синаптических образований, содержащих активные зоны, определяющие точные места выхода нейромедиатора. Кроме того, эти утолщения не прилегают к каким-либо специализированным рецептивным участкам постсинаптической клетки. Вместо этого медиатор диффундирует в широких пределах, воздействуя сразу на рецепторы нескольких клеток, расположенных вблизи, паракринным способом (подобно местным гормонам).
Аналогичным образом построены и работают секреторные нервные окончания на железистых клетках.
Эффекторные окончания на поперечнополосатой мускулатуре обычно образуются нейронами двигательных ядер передних рогов спинного мозга или ствола головного мозга, а эффекторные окончания на гладкомышечных и секреторных клетках - нейронами вегетативной нервной системы.
Рецепторные (чувствительные) нервные окончания (рецепторы). Это окончания дендритов рецепторных (чувствительных) нейронов. Последние расположены только в спинномозговых ганглиях или чувствительных ядрах черепно-мозговых нервов. Рецепторы рассеяны по всему организму и воспринимают раздражения как из внешней среды (экстерорецепторы), так и внутренней среды (интерорецепторы).
По виду воспринимаемого раздражения рецепторы делят на барорецепторы (воспринимают давление), хеморецепторы (химические вещества), терморецепторы (температуру) и др.
По строению рецепторы делят на свободные (состоят только из конечных ветвлений осевого цилиндра) и несвободные (окружены клетками нейроглии и соединительной ткани). Если несвободные рецепторы окружены соединительнотканной капсулой, то их называют инкапсулированные, а не имеющие такой капсулы - неинкапсулированные рецепторы.
Свободные нервные окончания характерны для эпителия. Нервное волокно, подходя к эпителиальному пласту, теряет миелиновую оболочку, а осевой цилиндр распадается на мельчайшие веточки, которые проходят между эпителиальными клетками. Для соединительной ткани характерны несвободные рецепторы.
Примером инкапсулированных рецепторов могут служить пластинчатые тельца Фатер-Пачини (барорецепторы). В центре такого тельца расположена внутренняя луковица, состоящая из глиальных клеток, которые возбуждаются при изменении давления. Внутрь луковицы входят ветвления осевого цилиндра дендрита, которые снимают возбуждение с глиальных клеток. Снаружи расположена многослойная соединительнотканная капсула. Между слоями капсулы находится жидкость, которая передаёт давление.
Другим примером инкапсулированных рецепторов являются осязательные тельца Мейснера, расположенные в сосочках дермы кожи. Внутри них расположен изгибающийся осевой цилиндр, окружённый видоизменёнными нейролеммоцитами, тактильными клетками, а вокруг - тонкая однослойная соединительнотканная капсула. Коллагеновые волокна связывают тактильные клетки с капсулой, а капсулу с базальной мембраной эпидермиса так, что любое смещение эпидермиса передаётся на осязательные клетки, возбуждение с которых снимается ветвлениями осевого цилиндра.
К рецепторам скелетных мышц относятся нервно-мышечные и нервно-сухожильные веретёна, воспринимающие изменения длины мышечных волокон и степень натяжения сухожилия.