- •Введение в гистологию
- •2. Цитология
- •Структурные компоненты клетки
- •Клеточная оболочка (цитолемма)
- •Транспорт через цитолемму.
- •Органеллы
- •Мембранные органеллы.
- •Немембранные органеллы
- •Органеллы специального назначения
- •Включения
- •3. Ядро
- •Взаимодействие структурных компонентов клетки при синтезе белков и небелковых веществ.
- •Жизненный цикл клетки.
- •Смерть клетки.
- •Деление клеток
- •Действие радиации
- •4. Эмбриология человека -1. Развитие зародыша
- •Этапы эмбриогенеза.
- •5. Ткани. Эпителий. Железы
- •Эпителиальные ткани
- •Покровный эпителий
- •Морфологическая классификация
- •Характеристика различных типов покровного эпителия
- •Железистый эпителий
- •6. Кровь и лимфа. Кроветворение
- •Форменные элементы крови
- •Гемопоэз
- •7. Собственно соединительные ткани
- •Волокнистые соединительные ткани.
- •Плотная волокнистая соединительная ткань
- •Соединительные ткани со специальными свойствами.
- •8. Скелетные соединительные ткани
- •Костная ткань
- •Строение трубчатой кости (кость как орган).
- •Развитие кости в эмбриогенезе (остеогенез)
- •9. Мышечные ткани
- •Гладкая мышечная ткань
- •Поперечнополосатая мышечная ткань
- •10. Нервная ткань -1. Нейроны и нейроглия
- •Внутреннее строение нейронов
- •Аксональный транспорт
- •Нейроглия
- •11. Нервная ткань - II. Нервные волокна и окончания
- •Миелиновые нервные волокна.
- •Безмиелиновые нервные волокна.
- •Нервные окончания
- •Межнейрональные синапсы
- •Синаптическая передача.
- •Рефлекторные дуги
- •12. Частная гистология. Нервная система -1
- •Нервная система
- •Периферическая нервная система
- •Центральная нервная система
- •Спинной мозг
- •Головной мозг
- •Ствол мозга
- •Мозжечок
- •Кора больших полушарий
- •Модульный принцип организации коры мозга
- •Пластичность нервной системы
- •14. Анализаторы -1. Орган обоняния. Орган зрения
- •Орган обоняния
- •Орган зрения
- •15. Органы чувств-2 орган вкуса орган слуха и равновесия
- •Орган вкуса.
- •Орган слуха и равновесия
- •Спиральный (кортиев) орган.
- •Гистофизиология органа слуха.
- •Вестибулярная часть перепончатого лабиринта
- •16. Сердечнососудистая система
- •Артерии
- •Микроциркуляторное русло
- •Лимфатические сосуды.
- •Развитие.
- •17. Органы кроветворения и иммуногенеза
- •Красный костный мозг
- •Тимус (вилочковая железа)
- •Лимфатические узлы
- •Селезенка
- •18. Эндокринная система
- •Гипоталамус.
- •Гипофиз
- •Эпифиз (шишковидная железа)
- •19. Эндокринная система-2. Периферические органы Щитовидная железа
- •Околощитовидные железы
- •Надпочечники
- •20. Пищеварительная система-1. Органы ротовой полости
- •Ротовая полость
- •Твердое и мягкое небо
- •Большие слюнные железы
- •Миндалины
- •21. Глотка. Пищевод. Желудок Глотка
- •Пищевод
- •Желудок
- •13. Кишечник
- •Тонкий кишечник
- •Гистофизиология процессов пищеварения и всасывания в тонком кишечнике.
- •Толстая кишка
- •Червеобразный отросток.
- •Прямая кишка
- •24. Печень. Поджелудочная железа
- •Желчный пузырь
- •Поджелудочная железа
- •25. Кожа и ее производные
- •Производные кожи
- •26. Дыхательная система
- •Носовая полость
- •Гортань
- •27. Мочевыделительная система
- •Мочевыводящие пути.
- •Мочеточники
- •Мочевой пузырь
- •28. Мужская половая система
- •Яички (семенники).
- •Семявыносящие пути
- •Добавочные железы
- •Семенные пузырьки
- •Предстательная железа (простата).
- •Бульбоуретральные (Куперовы) железы
- •Половой член
- •Мужской мочеиспускательный канал (уретра)
- •29. Женская половая система -1
- •Яичники
- •Желтое тело
- •30. Женская половая система-2. Яйцеводы. Маточные трубы
- •Влагалище
- •Наружные половые органы
- •Овариально-менструальный цикл
- •Молочные железы
- •31. Эмбриология человека-2 внезародышевые (провизорные) органы
- •Желточный мешок
- •Аллантоис
- •Плацента
- •Критические периоды развития
Смерть клетки.
Различают две фермы гибели клеток - некроз и апоптоз.
Некроз вызывается главным образом различными внешними факторами (химическими или физическими), которые нарушают проницаемость мембран и клеточную энергетику. В результате нарушается ионный состав клетки, происходит набухание мембранных органоидов, прекращается синтез АТФ, нуклеиновых кислот, белков, происходит деградация ДНК, активация лизосомных ферментов, что в итоге приводит к растворению, "самоперевариванию" клетки — лизису. Этот процесс преобладает при старении клетки.
Апоптоз начинается с активации в ядре генов, ответственных за самоуничтожение клетки (генетической программы смерти). Программа такого самоуничтожения может включаться при воздействии на клетку сигнальных молекул или наоборот, прекращении действия регулирующего сигнала. Апоптоз широко распространён в эмбриогенезе, в процессе которого в организме образуется гораздо больше клеток,, чем. нужно для взрослого организма, Примером запрограммированной гибели клеток во взрослом организме является атрофия молочной железы после окончания лактации, гибель клеток жёлтого тела в конце менструального цикла или беременности. Процесс апоптоза, значительно отличается от некроза. В начале апоптоза синтез РНК и белка не снижается, в цитоплазме клетки возрастет содержание, ионов кальция, активируются эндонуклеазы, под действием которых происходит расщепление ДНК на нуклеосомные фрагменты. При этом хроматин конденсируется, образуя грубые скопления по периферии ядра. Затем. ядра начинают фрагментироваться, распадаться на «микроядра», каждое из которых покрыто ядерной оболочкой. При этом цитоплазма также начинает фрагментироваться и от клетки отшнуровываются крупные фрагменты, часто содержащие «микроядра» - апоптические тельца. При этом клетка как бы рассыпается на фрагменты, а апоптические тельца поглощаются фагоцитами или некротизируются и постепенно растворяются.
Деление клеток
Митоз, кариокинез или непрямое деление - универсальный способ деления любых животных клеток. При этом удвоившиеся и конденсированные хромосомы переходят в компактную форму митотических хромосом. Затем образуется веретено деления, которое, обеспечивает разделение и расхождение хромосом к противоположным полюсам клетки. Митоз заканчивается делением тела клетку (цитотомия). Биологическая сущность митоза, заключается в равномерном распределении генетического материала между дочерними клетками. Процесс митоза подразделяется на несколько основных фаз - профаза, метафаза, анафаза и телофаза.
Профаза. ДНК в результате суперспирзлизации начинает выявляться под микроскопом в ядре клетки в виде палочковидных телец - хромосом. Процессы транскрипции в них прекращаются. Затем происходит исчезновение (дезинтеграция) ядрышек и ядерной оболочки. Центриоли расходятся к полюсам клетки, образуется митотическое веретено (веретено деления), его нити прикрепляются к кинетохорам хромосом.
Метафаза. В этот период заканчивается образование веретена деления, а хромосомы выстраиваются в экваториальной плоскости клетки, образуя метафазную пластинку хромосом (вид сбоку) или материнскую звезду (вид с полюсов клетки). К концу метафазы завершается процесс разделения сестринских хроматид, и они остаются связанными между собой только в области центромера. Метафаза по продолжительности занимает 30% времени всего митоза.
Анафаза. Хромосомы растягиваются к полюсам клетки с помощью микротрубочек веретена деления со скоростью 0,2-0,5 мкм/мин, что связано с деполимеризацией и укорочением микротрубочек и работой белков-транслокаторов. Это самая короткая фаза митоза, занимающая по продолжительности лишь 5-10% от всего времени митоза.
Телофаза. Начинается с остановки разошедшихся к полюсам хромосом (ранняя телофаза) и заканчивается созданием новых интерфазных ядер и разделением материнской клетки на две дочерние в результате цитотомии (поздняя телофаза). При этом хромосомы деконденсируются, образуются ядерные оболочки и формируются новые ядрышки.
Поскольку митоз очень сложный и тонкий процесс, во время деления клетки очень чувствительны к воздействию физико-химических факторов (облучение, токсические вещества, лекарственные препараты). При повреждении веретена деления может произойти или задержка митоза в метафазе, или рассеивание хромосом. При нарушениях репродукции центриолей могут возникать многополюсные и асимметричные митозы. Нарушения процесса цитотомии приводят к появлению гигантских ядер или многоядерных клеток.
Плоидность - число наборов хромосом в клетке, обозначаемое буквой n. Пропорциональное содержание ДНК в клетке обозначается буквой с. В половых клетках набор хромосом гаплоидный (1n и 1с), а в соматических клетках набор хромосом обычно диплоидный (2n и 2с). Среди соматических клеток встречаются и полиплоидные, в которых набор хромосом больше: тетраплоидный (4n) и даже октаплоидиый (8n).
Полиплоидия - образование клеток с повышенным (больше диплоидного) содержанием хромосом. Такие клетки появляются в результате отсутствия или незавершенности отдельных этапов митоза, при блокаде цитотомии. При этом после прохождения S и G2- периодов клетки вступают в митоз с тетраплоидным набором хромосом, проходят все его фазы, но не делятся на две дочерние. Особый способ полиплоидизации - эндорепродукция. При этом в клетке происходит несколько циклов редупликации ДНК (S-периодов), без последующего образования митотических хромосом и митоза: Это приводит к прогрессивному увеличению количества ДНК в ядре.
Двуядерные и многоядерные клетки образуются тогда, когда в результате митоза происходит образование двух или более ядер, но без последующей цитотомии.
Мейоз
Мейоз - способ деления, в результате которого образуются клетки с гаплоидным набором хромосом (половые клетки). Оба деления мейоза происходят как обычный митоз, однако в профазе первого деления происходит обмен генами между гомологичными хромосомами (кроссинговер), между первым и вторым делением нет интерфазы и поэтому не происходит редупликации ДНК. Биологическое значение мейоза заключается в том, что образовавшиеся мужские и женские половые клетки несут генетическую информацию от отца и матери и при слиянии этих клеток образуется зигота с диплоидным набором хромосом, несущая равное количество генетической информации от обоих родителей.
Внутриклеточная регенерация - восстановление, замена структурных компонентов клетки. В процессе жизнедеятельности клетки происходит постоянное изнашивание и обновление её структурных компонентов: в течение нескольких часов или дней постепенно, полностью обновляются все молекулы биополимеров, из которых построены мембраны и немембранные компоненты клетки. Постепенно все структурные компоненты клетки замещаются на новые. Это особенно важно для клеток, которые не способны размножаться и регенерировать на клеточном уровне (нервные клетки, клетки сердца), их структурные компоненты на протяжении долгой жизни клетки могут обновляться многократно. Даже в относительно стабильных молекулах ДНК происходит постоянная замена (репарация) ее повреждённых фрагментов.
Адаптация клеток - процесс приспособления клеток к изменяющимся условиям существования. Например, мышечные клетки приспосабливаются к повышенной физической нагрузке, нервные клетки - к повышенной умственной нагрузке, клетки печени и почек - к воздействию токсических веществ, клетки кожи - к повышенному ультрафиолетовому облучению. При этом в клетках усиливаются процессы биосинтеза белка, увеличиваются размеры ядра, ядрышек, площадь поверхности ядерной оболочки, интенсивность транспортных и всех необходимых обменных процессов. Увеличиваются также количество и размеры органелл, необходимых для усиленной работы клетки. Все это приводит к увеличению размеров самой клетки (гипертрофия клетки). Адаптация клеток имеет важнейшее значение для сохранения их жизнедеятельности в изменённых условиях существования, в том числе и при различных заболеваниях организма.