Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
theory по тоиит, ГГТУ Сухого.doc
Скачиваний:
304
Добавлен:
21.03.2016
Размер:
17.32 Mб
Скачать

1.5.2 Спектральная плотность мощности случайного процесса

Подразумевая под случайным процессом множество (ансамбль) функций времени, необходимо иметь в виду, что функциям, имеющим различную фор­му, соответствуют различные спектральные характеристики. Усреднение комплексной спектральной плотности, определяемойой (1.47), по всем функциям приводит к нулевому спектру процесса (при М[х(t)]=0) из-за случайности и независимости фаз спектральных составляющих в различных реализациях.

Можно, однако, ввести понятие спектральной плотности сред­него квадрата случайной функции, поскольку значение среднего квадрата не зависит от соотношения фаз суммируемых гармоник. Если под случай­ной функцией х(t) подразумевается электрическое напряжение или ток, то средний квадрат этой функции можно рассматривать как среднюю мощ­ность, выделяемую в сопротивлении 1 Ом. Эта мощность распределена по частотам в некоторой полосе, зависящей от механизма образования случай­ного процесса.

Спектральная плотность средней мощности представляет со­бой среднюю мощность, приходящуюся на 1 Гц при заданной частоте ω. Размерность функции W(ω), являющейся отношением мощности к полосе частот, есть

Спектральную плотность случайного процесса можно найти, если из­вестен механизм образования случайного процесса. Применительно к шу­мам, связанным с атомистической структурой материи и электричества, эта задача будет позже. Здесь же мы ограничимся несколькими определениями общего характера.

Выделив из ансамбля какую-либо реализацию xk(t) и ограничив ее дли­тельность конечным интервалом Т, можно применить к ней обычное преоб­разование Фурье и найти спектральную плотность XkT(ω). Тогда энергию рассматриваемого отрезка реализации можно вычислить с помощью форму­лы:

(1.152)

Разделив эту энергию на T, получим среднюю мощность k-й реализации на отрезке Т

(1.153)

При увеличении Т энергия ЭкТ возрастает, однако отношение стремится к некоторому пределу. Совершив предельный переход, получим:

где

(1.154)

представляет собой спектральную плотность средней мощности рассматри­ваемой k-й реализации.

В общем случае величина Wk(ω) должна быть усреднена по множеству реализаций. Ограничиваясь в данном случае рассмотрением стационарного и эргодического процесса, можно считать, что найденная усреднением по одной реализации функция Wk(ω) характеризует весь процесс в целом. Опуcкая индекс k, получаем окончательное выражение для средней мощности случайного процесса

где

. (1.155)

Для процесса с нулевым средним

(1.156)

Из определения спектральной плотности (1.155) очевидно, что Wх(ω) является четной и неотрицательной функцией ω.

1.5.3 Соотношение между спектральной плотностью и ковариационной функцией случайного процесса

С одной стороны, скорость изменения х(t) во времени определяет шири­ну спектра. С другой стороны, скорость изменения х (t) определяет ход ковариационной функции. Очевидно, что между Wх(ω) и Кх(τ) имеется тес­ная связь.

Теорема Винера — Хинчина утверждает, что Кх(τ) и Wx(ω) связаны между собой преобразованиями Фурье:

(1.157)

(1.158)

Для случайных процессов с нулевым средним аналогичные выражения имеют вид:

, (1.159)

.(1.160)

Из этих выражений вытекает свойство, аналогичное свойствам преобра­зований Фурье, для детерминированных сигналов: чем шире спектр случайного процесса, тем меньше интервал корреляции, и соответственно чем больше интервал корреляции, тем уже спектр процесса (см.рис.1.20).

Рис.1.20. Широкополосный и узкополосный спектры случайного процесса; границы центральной полосы : ±F1

Большой интерес представляет белый шум, когда спектр равномерен на всех частотах .

Если в выражение 1.158 подставить Wx(ω) = W0 = const, то получим

(1.161)

где δ(τ) — дельта-функция.

Для белого шума с бесконечным и равномерным спектром корреляцион­ная функция равна нулю для всех значений τ, кроме τ = 0, при котором Rx(0) обращается в бесконечность. Подобный шум, имеющий игольчатую структуру с бесконечно тонкими случайными выбросами, иногда называют дельта-коррелированным процессом. Дисперсия белого шума бесконечно велика.

Вопросы для самопроверки

  1. Назовите основные характеристики случайного сигнала.

  2. Как связаны математически корреляционная функция и энергетический спектр случайного сигнала.

  3. Какой случайный процесс называется стационарным.

  4. Какой случайный процесс называется эргодическим.

  5. Как определяется огибающая, фаза и частота узкополосного сигнала

  6. Какой сигнал называется аналитическим.