
- •Геодезия
- •1 Теория погрешности измерений
- •1.2 Погрешности измерений, их классификация
- •1.3 Основные задачи теории погрешностей и статистические свойства случайных погрешностей результатов измерений
- •2 Оценка точности результатов измерений и их функции.
- •2.1 Числовые характеристики точности измерений
- •2.2 Оценка точности функций измеренных величин
- •1 Умножение на постоянный множитель
- •2 Алгебраическая сумма нескольких измеренных величин
- •3 Линейная функция
- •2.5 Веса измерений и их свойства. Веса функций
- •2.6 Математическая обработка неравноточных
- •2.7 Оценка точности по разностям двойных
- •3 Государственная плановая геодезическая сеть
- •3.1 Виды геодезических сетей
- •3.2 Государственная геодезическая сеть
- •Триангуляция 1класса
- •Триангуляция 2 класса
- •Триангуляция 3 класса
- •Астрономический пункт
- •3.3 Геодезические сети сгущения
- •3.4 Съёмочная геодезическая сеть (съёмочное обоснование)
- •4 Высотные геодезические сети
- •4.1 Государственная нивелирная сеть (гнс)
- •4.2 Высокоточное нивелирование
- •4.3 Нивелирование IV класса
- •4.4 Закрепление нивелирных линий на местности
- •5 Определение дополнительных геодезических пунктов
- •5.1 Цель и методы определения дополнительных пунктов
- •5.2 Передача координат с вершины знака на землю
- •5.3 Определение координат точки для привязки хода к геодезическим сетям высшего класса
- •6 Прямая и обратная засечки
- •6.1 Прямая засечка (формулы Юнга)
- •6.2 Прямая засечка (формулы Гаусса)
- •6.3 Обратная засечка (формулы Кнейссля)
- •7 Уравнивание съёмочных геодезических сетей
- •7.1 Построение съёмочных ходов
- •7.2 Уравнивание системы нивелирных ходов с одной
- •7.3 Уравнивание системы теодолитных ходов с одной узловой точкой
- •8 Проекция и плоские прямоугольные
- •8.1 Общие сведения о картографических проекциях
- •8.2 Сущность проекции Гаусса – Крюгера
- •8.3 Плоские прямоугольные координаты Гаусса-Крюгера
- •8.5 Искажение площадей в проекции Гаусса
- •9 Уравнивание геодезических сетей сгущения, построенных методом триангуляции
- •9.1. Цель и содержание предварительных вычислений в триангуляции
- •9.2 Цель и содержание уравнительных вычислений в триангуляции
- •9.3 Виды условных уравнений. Условные уравнения фигур
- •10 Уравнивание центральной системы
- •10.1 Уравнивание центральной системы
- •10.2 Уравнивание геодезического четырехугольника
- •11.1 Уравнивание цепочки треугольников между двумя
- •12 Оптический теодолит 3т2кп. Угловые измерения в геодезических сетях сгущения
- •12.1 Оптические теодолиты, применяемые при построении геодезических сетей сгущения
- •12.2 Устройство теодолита 3т2кп
- •12.3 Приведение теодолита 3т2кп в рабочее положение
- •12.4 Общие правила наблюдений
- •12.5. Измерение горизонтальных углов и направлений
- •12.6 Определение элементов приведения графическим способом
- •13. Уравнивание съёмочных полигонов
- •13.1 Уравнивание нивелирных полигонов
- •13.2 Уравнивание сети теодолитных полигонов
- •14 Перенесение проекта в натуру
- •14.1 Сущность и методы перенесения проектов в натуру
- •14.2 Подготовительные работы при перенесении проекта в натуру
- •14.3 Составление разбивочного чертежа
- •14.4 Элементы разбивочных работ
- •Горизонтального угла
- •Проектной длины линии
- •14.5 Способы перенесения проектов в натуру
- •Полярных координат
- •Прямоугольных координат
- •14.6 Способы построения геодезических сетей
- •15 Спутниковые методы в геодезии
- •15.1 Глобальные спутниковые системы
- •15.2 Принципы определения местоположения пунктов
- •15.3 Порядок выполнения геодезической съемки gps
- •15.4 Современные геодезические приборы
- •Геодезия
2.5 Веса измерений и их свойства. Веса функций
измеренных величин. Средняя квадратическая
погрешность единицы веса
Обработку неравноточных измерений данных нельзя производить по формулам равноточных измерений, т.к. более точные измерения, очевидно, должны оказывать и большее влияние на окончательный результат.
Различная точность измерений учитывается при совместной обработке их результатов путем введения вспомогательных величин, называемых весами. Чем надежнее результат измерения, тем меньше соответствующая ему средняя квадратическая погрешность и тем больше его вес. Вес – это величина, обратно пропорционалъная квадрату средней квадратической погрешности, характеризующей результат данного измерения:
р
=
(32)
где k – произвольно выбранное число.
Свойства весов:
1 Вес – понятие относительное, т.е. он не имеет размера.
2 Все веса можно увеличивать или уменьшать в одно и то же количество раз.
3 Веса можно учитывать только сравнивая их друг с другом.
Понятие веса применимо и для любой функции F измеренных величин. Вес рF функции F при известной её средней квадратической погрешности mF вычисляют по формуле
рF
=
(33)
Средние квадратические погрешности неравноточных результатов не дают общей характеристики точности полученных результатов. В этом случае пользуются средней квадратической погрешностью единицы веса , т.е. погрешностью результата с весом, равным единице
р0
= 1 =
(34)
Установим
связь между средней квадратической
погрешностью единицы веса
и средней
квадратической погрешностью
m
результата
измерения с весом
р =
.
Отношение
весов
,
откуда
,
(35)
т.е. средняя квадратическая погрешность единицы веса равна средней квадратической погрешности результата измерения, умноженной на квадратный корень из его веса. Если имеется ряд неравноточных измерений с весами р1, р2, …, рn и средними квадратическими погрешностями m1, m2, … , mn, то для каждого результата погрешности единицы веса будут:
,
,
. . . . . . . . . . . . . . .
.
Среднее квадратическое значение из этого ряда будет
2
=
,
откуда
=
(36)
Если заменить квадраты средних квадратических погрешностей m квадратами истинных или квадратами вероятнейших ошибок V, то формула (36) примет вид
=
(37)
2.6 Математическая обработка неравноточных
измерений одной и той же величины
При неравноточных измерениях в качестве вероятнейшего значения принимают среднее весовое. Вероятнейшее значение величины, полученное из ряда неравноточных результатов, называют общей арифметической серединой.
Для определения в этом случае в качестве общего результата арифметической середины пользуются формулой
L0
=
(38)
где l1, l2, … , ln - отдельные результаты измерений с весами р1, р2, … , рn.
Порядок математической обработки следующий.
1.
Определяют веса результатов измерений.
Если уравнивают превышения, то веса
определяют по формуле: рi
=
,
где Li
– длина
ходов в км. Если же уравнивают приращения
координат, то р
=
,
где
S
- длина
хода в км.
2. Имея веса, находят наиболее надежное значение измеренной величины, т.е. среднее весовое из результатов измерений по формуле (38). Для упрощения вычислений используют приближенное значение l0 (фиктивное среднее). Тогда среднее весовое находим по формуле
LB
= l0
+
(39)
где i = li – l0 – уклонение от фиктивного среднего.
3. Вычисляют поправки V:
Vi = LB – li (40)
Контроль вычислений рV = 0 (41)
4. Определяют рV2 и рV.
Контроль рV2 = - рV (42)
5. Вычисляют среднюю квадратическую погрешность единицы веса, т.е. того результата, вес которого равен единице
(43)
6. Находят СКП общей арифметической середины (среднего весового)
МВ
=
(44)