Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Шитовидная.docx
Скачиваний:
27
Добавлен:
13.03.2016
Размер:
88.49 Кб
Скачать

Гормоны. Определение понятия, строение, физиологические эффекты.

Гормонами называются специфические физиологически активные вещества, вырабатываемые специальными эндокринными органами или тканями, секретируемые в кровь или лимфу и оказывающие действие на строение и функции вырабатывающего их организма вне места своего образования.

Гормоны не следует путать с продуктами обмена веществ в организме, образующимися в результате жизнедеятельности различных клеток или даже всех клеток тела и обладающими определенной физиологической активностью. Такие вещества называются парагормонами. К парагормонам относятся углекислота, мочевина, глюкоза, свободные жирные кислоты.

Остальные вещества, оказывающие физиологическое действие в образовавшем их организме, но не относящиеся согласно приведенному определению к гормонам, иногда объединяются под названием «гормоноиды».

Они включают в себя: 1) «клеточные гормоны» — оказывают свое физиологическое действие внутри тех клеток, в которых образуются; 2) «тканевые гормоны» — образуются в клетках, главная функция которых не секреторная, они распространяются главным образом путем диффузии и оказывают свое действие вблизи места образования; 3) «медиаторы нервного возбуждения».

В общем, можно установить четыре типа воздействия гормонов:

1) метаболическое — вызывающее изменения обмена веществ. Все гормоны оказывают влияние на те или иные процессы обмена веществ. Однако главное физиологическое значение некоторых гормонов заключается в определенных воздействиях на разные виды обмена. Например, инсулин, глюкагон и адреналин регулируют углеводный обмен, глюкокортикоиды стимулируют образование углеводов из продуктов распада белков, минералокортикоиды влияют на содержание натрия и калия в организме, гормон околощитовидных желез регулирует обмен кальция и фосфора. Соматотропный гормон гипофиза стимулирует синтез белка в организме;

2) морфогенетическое или формативное — заключающееся в стимуляции формообразовательного процесса, дифференциации тканей и органов, роста и метаморфоза. Так гонадотропные гормоны стимулируют рост и созревание половых желез, а половые гормоны — развитие других частей полового аппарата и вторичных половых признаков;

3) кинетическое или пусковое — вызывающее определенную деятельность эффекторов. Под влиянием гормонов в пигментных клетках (хроматофорах) зерна пигмента перемещаются током протоплазмы, то концентрируются в центре клеток, то диффузно распространяются по ее отросткам, что приводит к изменению окраски животного. Особенный вид действия гормонов — эндокринокинетическое («тропные» гормоны гипофиза необходимы для выработки и секреции гормонов щитовидной железы, половых желез и некоторых гормонов коры надпочечников [АКТГ —> глюкокортикоиды);

4) коррегирующее — изменяющее интенсивность функций всего организма или его органов, которые могут осуществляться и без наличия гормонов. Так адреналин учащает ритм и усиливает силу сокращения сердца, тормозит моторику ЖКТ, повышает тонус сосудов.

В процессе эволюции появились различные химические типы гормонов. Белковые гормоны — в свою очередь, они подразделяются на:

а) пептидные

— с открытой цепью — адренокортикотропный гормон (АКТГ), соматотропный (СТГ), лактотропный (ЛТГ), меланоцитостимулирующий гормон, паратиреоидный гормон, тирокальцитонин, инсулин, глюкагон. Аденогипофизотропные вещества, продуцируемые нейросекреторными клетками гипоталамуса и активирующие (или угнетающие) гормонопоэтические функции передней доли гипофиза, относятся к малым пептидам;

— циклические пептиды (октапептиды) — антидиуретический гормон и окситоцин;

б) протеоидные— представлены гликопротеидами. К этой группе относятся тиреотропный гормон (ТТГ), фолликулостимулирующий (ФСГ) и лютеинизирующий (ЛГ) гормоны передней доли гипофиза. Гликопротеидом является также секреторный продукт щитовидной железы — тиреоглобулин.

Гормоны аминокислотной группы и их аналоги — производные двух аминокислот:

а) тирозина — это гормоны щитовидной железы: трийодтиронин, тироксин, а также гормоны мозгового слоя надпочечников — адреналин и норареналин;

б) триптофана — гормон эпифиза мелатонин.

Стероидные гормоны. Стероиды (в том числе и витамин D) и простагландины имеют липидную природу. В основе молекулы всех стероидных гормонов лежит циклопентанопергидрофенантреновое кольцо. К числу наиболее важных представителей этой группы следует отнести гормоны коры надпочечников и гонад — кортикостерон, 17-оксикортикостерон, кортизол (или гидрокортизон), альдостерон, прогестерон, эстрадиол, эстрон, эстриол, тестостерон.

Тиреоидные гормоны. Главными веществами, используемыми в синтезе тиреоидных гормонов, являются йод и тирозин. Щитовидная железа отличается высокоэффективным механизмом захвата йода из крови, а в

В качестве источника тирозина она синтезирует и использует крупный гли-копротеин тиреоглобулин.

Если тирозин в организме содержится в большом количестве и поступает как из пищевых продуктов, так и из распадающихся эндогенных белков, то йод присутствует лишь в ограниченном количестве и поступает только из пищевых продуктов. В кишечнике в процессе переваривания пищи йод отщепляется, всасывается в виде йодида и в этой форме циркулирует в крови в свободном (несвязанном) состоянии.

Йодид, захватываемый из крови тиреоидными (фолликулярными) клетками, и тиреоглобулин, синтезируемый в этих клетках, секретируются (путем эндоцитоза) во внеклеточное пространство внутри железы, называемое просветом фолликула или коллоидным пространством, окруженное фолликулярными клетками. Но йодид не соединяется с аминокислотами. В просвете фолликула или (что более вероятно) на апикальной поверхности клеток, обращенной в просвет, йодид под влиянием пероксидазы, цитохромоксидазы и флавин-фермента окисляется в атомарный йод и другие окисленные продукты и ковалентно связывается фенольными кольцами тирозино-вых остатков, содержащихся в полипептидном каркасе тиреоглобулина. Окисление йода может происходить и неферментативным путем при наличии ионов меди и железа и тирозина, который в дальнейшем акцептирует элементарный йод. Связывание йода с фенольным кольцом происходит только в 3-м положении, либо как в 3-м, так и в 5-м положениях, в результате образуются монойодтирозин (МИТ) и дийодтирозин (ДИТ) соотвественно. Этот процесс йодирования тирозиновых остатков тиреоглобулина известен под названием этапа оргинификации в биосинтезе тиреоидных гормонов. Соотношение в щитовидной железе монойодтирозина и дийодтирозина составляет 1:3 или 2:3. Йодирование тирозина не требует наличия неповрежденной клеточной структуры железы и может происходить в бесклеточных препаратах железы при помощи фермента тирозинйодиназы, содержащей медь. Фермент локализован в митохондриях и микросомах.

Следует заметить, что лишь 1/3 поглощенного йода используется для синтеза тирозина, а 2/3 удаляется с мочой.

Следующим этапом является конденсация йодтирозинов с образованием йодтиронинов. Все еще оставаясь в структуре тиреоглобулина, молекулы МИТ и ДИТ (МИТ+ДИТ) конденсируются, образуя трийодтиронин (Т3), и подобно этому две молекулы ДИТ (ДИТ+ДИТ) конденсируются, образуя молекулу L-тироксина (Т4). В таком виде, т.е. связанные с тиреоглобулином, йодтиронины, равно как и неконденсированные йодтирозины, хранятся в тиреоидном фолликуле. Этот комплекс йодированного тиреоглобулина часто называют коллоидом. Таким образом, тиреоглобулин, составляющий 10% от влажной массы щитовидной железы, служит белком носителем, или предшественником накапливающихся гормонов. Соотношение тироксина и трийодтиронина равно 7:1.

Таким образом, в норме тироксин продуцируется в значительно большем количестве, чем трийодтиронин. Но последний обладает более высокой специфической активностью, чем Т4 (превосходя его в 5—10 раз по влиянию на метаболизм). Выработка Т3 усиливается в, условиях умеренной недостаточности или ограничений снабжения щитовидной железы йодом. Секреция тиреоидных гормонов — процесс, происходящий в ответ на метаболические потребности и опосредуемый действием тиреотропного гормона (ТТГ) на тиреоидные клетки — предполагает высвобождение гормонов из тиреоглобулина. Этот процесс происходит в апикальной мембране путем поглощения коллоида, содержащею тиреоглобулин (процесс, известный под названием эндоцитоза).

Тиреоглобулин затем гидролизустся в клетке под влиянием протеаз, а высвобождаемые таким образом тиреоидные гормоны выделяются в циркулирующую кровь.

Подводя итог вышесказанному, можно процесс биосинтеза и секреции тиреоидных гормонов подразделить на следующие этапы: 1 — биосинтез тиреоглобулина, 2 — захват йодида, 3 — органификация йодида, 4 — конденсация, 5 — поглощение клетками и протеолиз коллоида, 6 — секреция.

Биосинтез тироксина и трийодтирозина ускоряется под влиянием тиреотропного гормона гипофиза. Этот же гормон активирует протеолиз тиреоглобулина и поступление тиреоидных гормонов в кровь. В этом же направлении влияет возбуждение центральной нервной системы.

В крови 90—95% тироксина и в меньшей степени Т3 обратимо связываются с сывороточными белками, главным образом, с 1- и -2-глобулинами. Поэтому концентрация белковосвязанного йода в крови (БСЙ) отражает количество йодированных тиреоидных гормонов, поступающих в циркуляцию, и позволяет объективно судить о степени функциональной активности щитовидной железы.

Тироксин и трийодтиронин, связанные с белками, циркулируют в крови в качестве транспортной формы тиреоидных гормонов. Но в клетках эффекторных органов и тканей йодтиронины претерпевают дезаминирование, декарбоксилирование и дейодирование. В результате дезаминирования из Т4 и Т3, получаются тетрайодтиреопропионовая и тетрайодтиреоуксусная (а также, соотвественно, трийодтиреопропионовая и трийодтиреоуксусная) кислоты.

Продукты распада йодтиронинов полностью инактивируются и разрушаются в печени. Отщепившийся йод с желчью поступает в кишечник, оттуда вновь всасывается в кровь и реутилизируегся щитовидной железой для биосинтеза новых количеств тиреоидных гормонов. В связи с реутилизацией потеря йода с калом и мочой ограничивается всего лишь 10%. Значение печени и кишечника в реутилизации йода делает понятным, почему стойкие нарушения деятельности пищеварительного тракта могут повлечь за собой состояние относительной недостаточности йода в организме и оказаться одной из этиологических причин спорадической зобной болезни.

Механизм действия тиреоидных гормонов.

Тиреоидные гормоны оказывают многочисленные и разнообразные эффекты на дифференцировку, развитие и метаболический гомеостаз, контролируя синтез и активность регуляторных белков, в том числе ключевых ферментов метаболизма, гормонов и рецепторов. Известное действие тиреоидных гормонов на потребление кислорода определяется отчасти стимуляцией натриевого насоса за счет индукции мембранного фермента натрий-калийзависмой АТФазы. Этот и другие метаболические эффекты тиреоидных гормонов зависят от гормональной индукции синтеза РНК, осуществляемой путем регуляции экспрессии генов на ядерном уровне. Хотя существует и прямое влияние тиреоидных гормонов на клеточную мембрану и на митохондрии.

Основным йодтиронином, сскретируемым щитовидной железой, является тироксин (Т4), которому сопутствует небольшое количество трийодтиронина (Т3). В клетках-эффекторах Т4 дейодируется в Т,, который представляет собой главную внутриклеточную форму гормона. Это превращение происходит в плазматической мембране и эндоплазматическом ретикулуме. Хотя и показано присутствие связывающих Т белков в цитоплазме, но при этом они обладают относительно низким сродством к гормону. Поэтому в качестве истинного рецептора Т, рассматриваются ядерные участки, ответственные за эффекты тиреоидных гормонов.