Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
НП Автоматизация техпроцесів_2.doc
Скачиваний:
465
Добавлен:
10.03.2016
Размер:
44.3 Mб
Скачать

Автоматичного контролю і роботи бв–25

Принципова схема регулятора відносної вологості агента сушіння в устаткуванні для активного вентилювання зерна показана на рисунку. 4.13.

Вимірювання вологості зовнішнього повітря здійснюється за допомогою напівпровідникового вологочутливого опору – гігристора Rг.. Гігристор зашунтований опором Rш і включений до мостової схеми електронного моста, плечами якого є резистори R1...R4, а також опір реохорда Rр. Контакти SQ1–SQ3 трипозиційного пристрою моста, що настроюються на задані значення відносної вологості повітря φ1...φ3, через проміжні реле К1–К3 управляють включенням магнітних пускачів 1ЕК1–1ЕК3 трьох секцій підігрівання повітря в бункерах.

Рис. 4.13. Принципова схема автоматичного регулятора

Відносної вологості агента сушіння в бункері для активного вентилювання зерна

Принцип дії регулятора такий. При підвищенні відносної вологості зовнішнього повітря до значення φ1, замикається контакт SQ1 і спрацьовує реле К1, яке своїми контактами підключає до мережі живлення контактом 1КМ1 котушку магнітного пускача 1ЕК1 першої секції нагрівників. При подальшому підвищенні відносної вологості зовнішньою повітря до φ2 замикаються контакти SQ2 (при φ3 – замикаються SQ3), відповідно спрацьовують контакти К2 та К3 і підключаються наступні секції нагрівників. При цьому, коли спрацьовують контакти К1 та К3 загоряються сигнальні лампочки HL1–НL3, які показують оператору кількість включених секцій. При зниженні вологості аналогічно відбувається відключення секцій підігрівання повітря.

У схемі передбачене блокування на включення секцій при невключених вентиляторах, що здійснюється блок-контактами 1КМ, відповідного магнітного пускача двигуна вентилятора. Перемикач SA1 призначений для перемикання управління секціями підігрівання з автоматичного на ручний і навпаки. Поточне значення відносної вологості повітря фіксується стрілкою електронного моста. Ця інформація дозволяє оператору своєчасно включати і відключати регулятор, оскільки він працює лише на пониження вологості.

Питання для самоконтролю

1. Як здійснюється активне вентилювання зерна?

2. Яка шкідливість зберігання волого зерна?

3. Що дає активне вентилювання зерна?

4. Яка загальна будова бункера для активного вентилювання зерна?

5. Що передбачає автоматизація бункерів активного вентилю­вання зерна?

6. Поясніть роботу бункера активного вентилювання зерна по технологічній схемі.

7. Поясніть роботу бункера активного вентилювання зерна по принциповій електричній схемі.

ТЕСТИ

1. Який пристрій використовується для автоматичного вимикання привода поршня заглушки бункера активного вентилю­вання зерна?

  1. Кінцеві вимикачі

  2. Датчики рівня

  3. Реле вологості

2. За допомогою принципової електричної схеми бункера активного вентилювання зерна вкажіть, в яких режимах працює установка?

  1. Ручний, автоматичний.

  2. Сушка та консервація.

  3. Ручний, автоматичний, сушка та консервація.

3. За допомогою принципової електричної схеми бункера актив­ного вентилювання зерна вкажіть, який датчик використо­вується для контролю верхнього і нижнього рівня зерна?

  1. Датчики рівня SL2 контролює верхній і SL1 нижній рівень зерна в бункері.

  2. Датчики рівня SL1 контролює верхній рівень зерна в бункері.

  3. Датчики рівня SL1 контролює верхній і SL2 нижній рівень зерна в бункері.

4. За допомогою принципової електричної схеми бункера активного вентилювання зерна вкажіть, для чого використо­вуються датчики вологості В1?

  1. Для виміру вологості вхідного повітря, при високому за допомогою реле К1 вмикає магнітним пускачем КМ5 нагрівні елементи калорифера ЕК.

  2. Для виміру вологості повітря на виході з маси зерна, при наявності вологи за допомогою реле К2 вмикається магнітний пускач КМ2 приводу вентилятора М2

  3. Для виміру вологості вхідного повітря, при наявності вологи за допомогою реле К2 вмикається магнітний пускач КМ2 приводу вентилятора М2

5. За допомогою принципової електричної схеми бункера активного вентилювання зерна вкажіть, для чого використо­вується датчиками вологості В2?

  1. Для виміру вологості вхідного повітря, при високому за допомогою реле К1 вмикає магнітним пускачем КМ5 нагрівні елементи калорифера ЕК.

  2. Для виміру вологості повітря на виході з маси зерна, при наявності вологи за допомогою реле К2 вмикається магнітний пускач КМ4 приводу вентилятора М2

  3. Для виміру вологості повітря на виході з маси зерна, при високому за допомогою реле К1 вмикає магнітним пускачем КМ3 нагрівні елементи калорифера ЕК.

6. За допомогою принципової електричної схеми бункера активного вентилювання зерна вкажіть, для чого використо­вується реле часу КТ?

  1. Реле часу створює затримку часу необхідну для вимикання двигуна М2 вентилятора

  2. Реле часу створює затримку часу необхідну для виносу вологи з маси зерна до датчика вологості В2

  3. Реле часу створює затримку часу необхідну для виносу вологи з маси зерна до датчика вологості В1

4.4. АВТОМАТИЗАЦІЯ МОБІЛЬНИХ ПРОЦЕСІВ СІЛЬСЬКОГОСПОДАРСЬКОГО ВИРОБНИЦТВА

Обсяг автоматизації. До мобільного відносять такі техноло­гічні процеси, що виконуються безупинно пересувними машинами й агрегатами: перевезення вантажів, обробка ґрунту, посів і посадка рослин, догляд за врожаєм і збирання його. Їх виконують автомо­білями, тракторами, плугами, культиваторами, сівалками, жниварками, комбайнами і т.п.

Рівень автоматизації мобільних процесів відстає від рівня автоматизації стаціонарних процесів через складність створення систем автоматики для мобільних машин. Незважаючи на складності, на тракторах і сільськогосподарських мобільних машинах широко використовуються такі засоби автоматики:

  • прилади для контролю рівня палива, температури води, що охолоджує і гальмової рідини, тиску масла і частоти обертання двигунів внутрішнього згоряння;

  • регулятори оборотів і потужності, температури охолоджу­валь­ної рідини й масла в системі змащення двигунів внутрішнього згоряння;

  • автоматичні захисні пристрої, що охороняють робочі органи машини від поломок при зустрічі з перешкодами чи обмежувачі зусиль та значення крутного моменту на валу машини;

  • автоматичні пристрої для відводу робочих органів від стов­бурів дерев, стовпів, кущів для машин, що працюють у плодівництві і виноградарстві;

  • тяглово-зчіпні пристрої для автоматичного приєднання і відокремлення робочих машин від тяглових;

  • сигналізатори про заповнення збірних ємностей продуктом чи про забивання робочих органів матеріалом, наприклад для бункерів, шнеків і соломотрясів комбайна;

  • автомати для утворення тюків сіна чи соломи в прес-підби­рачах, в’язальні апарати жаток сніповязалок, що пресують механізми рулонних прес-підбирачів.

Робота більшості з перерахованих пристроїв заснована на механічних чи гідромеханічних принципах із приводом від вала відбору потужності. Багато пристроїв зв’язані з технологічним рухом робочих органів і коліс агрегату.

З появою сучасних напівпровідникових засобів електроніки і мікропроцесорної техніки на мобільних машинах і агрегатах стали використовувати електричні засоби автоматики в сполученні з гідравлічними виконавчими механізмами для виміру, контролю і керування.

Розроблено і впроваджується ряд САУ, призначених для:

  • водіння тракторів при оранці, посіві і посадці рослин;

  • підтримки сталості глибини оранки;

  • орієнтування трактора і робочих органів сівалки і культи­ватора при посіві і міжрядному обробітку просапних культур, виноградників;

  • водіння зернозбирального комбайна по краю нескошеної хлібної маси при скошуванні врожаю чи по валяннях скошеної хлібної маси при її обмолоті;

  • регулювання висоти зрізу хлібної маси чи трави при збиранні;

  • дотримання рівномірності висіву насіння з сівалок чи посадки розсади посадковою машиною;

  • регулювання завантаження молотильних апаратів і силосозби­ральних агрегатів;

  • вирівнювання сільськогосподарських машин і їхніх робочих органів, що працюють на схилах.

Таким чином, мобільні машини й агрегати оснащуються засо­бами і системами автоматики для керування траєкторією і швидкістю руху, завантаженням робочих органів і глибиною обробки ґрунту, шириною захоплення і висотою зрізу, координатами положення робо­чих органів і оброблюваного матеріалу, рівномірністю висіву і подачі оброблюваного продукту в машину.

При досягненні граничних значень контрольованих параметрів чи при виникненні аварійних режимів засоби автоматики попере­джають персонал або припиняють технологічний процес.

Розглянемо тільки принципи автоматизації основних технологіч­них процесів, що виконуються мобільною технікою. Більш детально з автоматизацією перерахованих процесів можна ознайомитися по спеціальній літературі.

Системи автоматичного водіння тракторів призначені для полегшення роботи тракториста, а в перспективі – для створення можливості одному трактористу одночасно керувати декількома тракторами, а потім для повної заміни тракториста автоматом керування рухом трактора. Звичайно тракторист, особливо при роботі на підвищених швидкостях, швидко утомлюється і не звертає уваги на малі порушення агротехнічних вимог виконання технологічного процесу, що в цілому приводить до зниження врожайності.

Розробкою пристроїв для водіння трактора інженери займаються з моменту створення перших тракторів. У Росії вперше в 1911 році О. Конджером і В. Корбеттой був запропонований “автоматично діюче кермо для орних тракторів”. Найбільший розвиток одержали роботи з автоводіння тракторів в останні два десятиліття.

Для створення систем автоводіння виявилося доцільним роботу трактора розбити на три етапи: виїзд у поле і повернення в господарство, рух по робочій довжині гону, повороти наприкінці гону для заїзду на новий гін.

Дотепер не розроблені системи для автоматичного водіння тракторів на всіх трьох етапах і немає доцільності в цьому. Найбільший етап за витратами часу й обсягом робіт, що виконуються, зв’язаний з перебуванням трактора на гоні, тому було запропоновано кілька методів автоводіння трактора під час його роботи.

Метод копіювання може бути використаний на більшості видів польових робіт: оранці, сівбі, культивації, збиранні, тобто тоді, коли агрегат повинний проходити щораз той самий шлях по рівновід­далених один від одного траєкторіях. Перший гін прокладається трактористом при ручному керуванні трактором, а потім по борозні чи від спеціально створеної маркером борозні. Копір рухається закріплений перед трактором, і видає сигнали на зміну траєкторії руху трактора відповідно до напрямку борозни.

Рис. 4.14. Схема пристрою для водіння трактора по копіру

Принцип дії системи автоводіння по копіру показано на рисунку 4.14. Копір 3 при русі трактора сковзає по дну борозни. Якщо копір відхиляється, наприклад, уліво, то замикається лівий контакт 4 і спрацьовує електромагніт УА1, що живиться від акумуляторної батареї трактора. При цьому важіль 6 пересуває поршні 2 золотники 1 теж уліво, і відкриваються його вікна а і б. Масло під тиском, створюваним гідронасосом, надходить через вікно а до лівого силового гідроцилін­дра, що відключає лівий фрикціон. Унаслідок цей трактор починає повертатися вліво до розмикання контактів 4, електромагніт УА1 відключається, і пружиною 5 поршні 2 золотники 1 повертаються у вихідне положення, при якому лівий і правий фрикціони трактора включені. При відхиленні копіра вправо спрацьовує електромагніт УАЗ, і тиск масла через вікно 6 діє на органи керування поворотом трактора вправо.

Метод копіювання простий за принципом дії, але має ряд недоліків: накопичується статична помилка керування, унаслідок цього після декількох проходів сильно викривляється маршрут руху, і тому зростають витрати енергії на безупинні повороти трактора. Крім того, копір при наїзді на місцеві перешкоди вискакує з борозни, і трактор здобуває довільний рух.

У методі програмного автоводіння траєкторія руху задається спеціальним програмним пристроєм.

Технічно здійснити програмне автоводіння дуже складно через необхідність мати високу точність дотримання траєкторії руху. Наприклад, на гоні довжиною 500 м погрішність роботи програмних пристроїв на оранці повинна бути не більше 0,02% (10 см. відхилення), а при квадратно-гніздовій посадці – 0,004% (2 см), що практично недосяжно.

Отже, програмне водіння може бути тільки в комбінації з копіюванням: на довжині гону трактором керують від пристрою, що копіює, а на поворотах від програмного.

При дистанційному керуванні оператор керує одним чи декількома агрегатами по провідних лініях зв’язку чи радіозв’язку. Практично використовувалося дублерне водіння трактора: тракторист, крім свого трактора, керує по каналі зв’язку сусіднім. Хоча цей метод скорочує число трактористів, але ускладнює їхню роботу з одночасного керування двома тракторами.

Методи, що використовують природні і штучні орієнтири, найбільш зручні при строго заданих маршрутах руху – при виїзді тракторів з господарства на польові стани, в поверненні, вивезенні гною від ферм, доставці кормів, обробці просапних культур, садів і виноградників.

Як природні орієнтири використовують рядки рослин, краї хлібостою, валки скошеної маси, шпалерний дріт на виноградниках, магнітне поле землі і навіть планети і зірки, як при навігаційному керуванні літаками і кораблями. Штучні орієнтири спеціально створюють на оброблюваних полях, прокладають кабелі, організо­вують місцеві радіополя, роблять мітки з добрив тощо. Найбільше повно випробуваний метод водіння по електромагнітному полю, створюваному проводами. Для цього прокладають під ґрунтом провід і по них пропускають високочастотні струми (десятки кГц), що навколо проводу створюють електромагнітне поле, сприймане спеціальними датчиками, установленими на тракторах.

Провід закладають на глибину до 0,7 м уздовж гону на відстані подвійної ширини захоплення робочої машини, на кінцях гону прокладають поперек окремий провід з електромагнітним полем іншої частоти, що служить сигналом для розвертання трактора на 180° (при човниковій обробці поля).

Рис. 4.15. Схема пристрою для водіння трактора по дроті

На рисунку 4.15 показано принцип автоводіння трактора по дроту. Система автоматичного водіння створена так, що витримує визначену відстань датчика 2 від дроту 1. При зміні цієї відстані сигнал від датчика в залежності від знака відхилення надходить через підсилювач У на електромагніти УА1 чи УА2 гідравлічні золотники 3. Золотник керує гідроциліндрами бічних фрикціонів трактора аналогічно схемі (рис. 4.14). При усуненні зазначеного відхилення поршні золотника 3 (рис. 4.15) займають вихідне положення під дією пружин 4. Через складність систем керування і ряду інших причин автоводіння поки не знайшло широкого застосування.

Системи керування робочими органами культиваторів при обробці просапних культур, бурякозбиральних комбайнів і інших машин працюють аналогічним чином. Автоматичне керування траєкто­рією руху сошників культиватора виключає помилкове зрізання культурних рослин. При ручному керуванні культиватором для видалення бур’янів недосвідчений тракторист може підрізати до 40% культурних рослин.

Рис. 4.16. Схема пристрою для керування культиватором

У подібних системах автоводіння використовують оптичні датчики чи електроконтактні щупи – дротові електроди 4 і 6 (рис. 4.16). Електроди 4 використовуються в системі автоводіння (САВ) трактора 3. Електроди 6 закріплюються на культиваторі на висоті, що відповідає висоті оброблюваної культури. При відхиленні корпуса культиватора 1 електроди стикаються з культурними рослинами в рядку 5 і утворять замкнутий електричний ланцюг через рослину, зем­лю і робочу машину. Оскільки через великий опір (від 1 до 25 МОм) цього ланцюга струм складає частки мікроампера, то використовується підсилювач У. З підсилювача сигнал надходить на електромагніт УА1 чи УА2 у залежності від знака відхилення культиватора. Електромагніти переставляють поршні золотника 7 і відкривають вікна а і б. Масло під тиском надходить в одну порожнину силового циліндра 2 і пересуває його поршень, з’єднаний з рамою культиватора, у зворотному напрямку доти, поки не розірветься ланцюг електрод – рослина. З другої порожнини циліндра масло повертається в гідросистему.

Автоматичні системи керування глибиною оранки призна­чені для контролю і стабілізації глибини оранки причіпними і начіпними плугами.

Серед багатьох запропонованих методів керування глибиною практичного використання були доведені силовий, висотний і комбінований способи.

Силовий спосіб заснований на тім, що тяговий опір плуга пропорційно глибині оранки. При збільшенні чи зменшенні тягового опору спеціальна пружина, установлена між трактором і плугом, стискується чи розтискується і переміщає поршень керуючого золотника. Унаслідок цього за допомогою силового гідроциліндра відбувається виглибнення чи заглибнення лемешів плуга до заданої величини стискального зусилля. Одночасно цей спосіб дозволяє стабілізувати навантаження трактора і тримати її в межах економічної роботи трактора.

Однак силовий спосіб задовільно працює тільки на однорідних ґрунтах при постійній швидкості руху трактора, тобто коли стискальне зусилля залежить тільки від глибини ходу лемеша.

Рис. 4.17. Схема пристрою для керування глибиною оранки

Для неоднорідних ґрунтів був запропонований висотний спосіб (рис. 4.17). Перед лемешем 1 плуга встановлюється спеціальне опорне колесо 2, яке є датчиком глибини, а органом, що задає і порівнює, є пружина 3. При зміні глибини оранки відбувається відкриття вікон а та б золотника 4.

Через відкриті вікна масло під тиском надходить у силовий циліндр, що регулює висоту плуга, відновлюючи глибину оранки.

Недолік висотного способу – стабілізація глибини оранки тільки того лемеша, перед яким встановлюється опорне колесо. Застосовують також комбінований спосіб, що поєднує пристрої силового і висотного способів керування. Розробляються інші способи регулювання глибини оранки.

Автоматичне керування висотою зрізу кормових трав, кукурудзи й іншої зеленої маси на корм худобі застосовують на силосозбиральних комбайнах і сінокосарках. Висота зрізу повинна бути мінімально припустимою, що підвищує збір кормів з полів і лугів.

Для цього використовують полозковий щуп (рис. 4.18), що копіює рельєф поля. Щуп 2 до поверхні поля притискається пружиною 3. Якщо висота зрізу відповідає заданої, то вікна а і б золотника 5 закриті, а поршень силового циліндра 6 і апарат, що ріже, 1, жорстко скріплений з поршнем, знаходяться на постійній висоті від поверхні поля. При зміні рельєфу поля полозковий датчик 2 відкриває вікна а і б золотника 5, і за допомогою силового гідроциліндра 6 відбувається відновлення заданої висоти апарата, що ріже, 7. При цьому вікна золотника закриваються, оскільки щуп повертається у вихідне положення. Запобіжний пристрій 4 запобігає поломки золотника при наїзді полозкового щупа на перешкоду.

Рис. 4.18. Схема пристрою для керування висотою зрізу

Автоматичне керування вирівнюванням кістяка зернозби­раль­ного комбайна при роботі на схилах дозволяє зберігати паралельність кістяка комбайна поверхні ґрунту і горизонтальність положення молотильного барабана й очисних пристроїв. Вручну ці операції виконувати дуже складно, тому що кут нахилу поверхні горбкуватої і гірської місцевості міняється безупинно.

При роботі комбайна без системи автоматичного керування кістяком на поперечних схилах з кутом ухилу більш 8° маса, що переробляється, збирається на похилій стороні комбайна, унаслідок цього порушується технологічний процес обмолоту зерна: збільшу­ється до 20...30% невимолот, до 30% – пошкоджуваність зерна і має місце забивання молотильних барабанів хлібною масою. Для вирівнювання корпус гірського комбайна встановлюють на параллелограмній ходовій частини 4 (рис. 4.19) і комбайн обладнують гідросистемою керування. При нахилі корпуса 1 комбайна, наприклад, вліво вантажний маятник 3 також відхиляється вліво і відкриває вікна а і б золотника 6. Масло під тиском надходить у вікно а і діє на поршень силового гідроциліндра 5. Оскільки цей поршень закріплений жорстко з ходовою частиною комбайна, то повертається кістяк комбайна по годинній стрілці відповідно осі його кріплення. Коли корпус займає горизонтальне положення, поршні золотника під дією маятника перекривають вікна золотника і жорстко фіксують положення гідроциліндра. Пристрої, що демпфірують, 2 призначені для виключення помилкових спрацьовувань системи при поштовхах і короткочасному відхиленні кістяка від горизонтального положення.

Рис. 4.19. Схема пристрою для вирівнювання кістяка комбайна

Автоматичне керування оптимальним завантаженням моло­тарки зернозбирального комбайна здійснюється регулюванням швид­кості пересування комбайна за допомогою зміни передаточного числа варіатора 2, що передає обертаючий момент від вала двигуна 1 комбайна на привод коліс 3 (рис. 4.20).

Рис. 4.20. Схема пристрою для керування завантаженням комбайна

Наприклад, при збільшенні товщини хлібної маси на кістяку 4 полозковий датчик товщини маси замикає верхні контакти 5, і включається електромагніт УА1, що пересуває поршень золотника і відкриває вікна а і б. Масло під тиском через вікно а надходить у гідроциліндр 7 і пересуває поршень силового циліндра вниз. У результаті цього у варіатора 2 збільшується передаточне число, комбайн знижує швидкість руху, і, отже, зменшується подача хлібної маси в молотильний барабан. При цьому розмикаються контакти 5, а поршні золотника б під дією пружини закривають вікна а і б.

Є також інші схеми регулювання завантаження молотильного барабана, наприклад, по виміру крутного моменту на його валу, а також по вимірі товщини хлібної маси під ланцюгами похилого транспортера жниварки. САУ завантаженням молотильного барабана забезпечує зменшення втрат зерна і краща якість обмолоту.

Автоматичний пристрій для керування фрезою використо­вується при обробці пристовбурних смуг у садах для відводу фрези від стовбурів дерев чи кущів. Відвід фрези 1 здійснює силовий гідроциліндр 2 при зіткненні щупа 8 з деревом чи кущем 7 (рис. 4.21). Щуп повертається по годинній стрілці і замикає контакти 5. У результаті цього спрацьовує електромагніт УА 2, що відкриває вікна а і б золотника 3. Масло під тиском надходить через вікна у верхню порожнину циліндра 2 і штоком поршня повертає фрезу 1 по годинній стрілці доти, поки не розімкнеться в крайньому положенні кінцевий вимикач 10 і замкнеться 9.

Рис. 4.21. Схема пристрою для керування фрезою в садах

При цьому електромагніт УА1 відключається, і вікна золотника 3 закриваються поршнями під дією пружин, фіксуючи фрезу у відведеному стані. Після обходу фрезою перешкоди щуп 8 під дією пружини 6 повертається у вихідний стан і замикає контакти 4, що приводить до спрацьовування електромагніта УАЗ і відкриттю вікон а і б золотника. При цьому масло надходить через вікно б у нижню порожнину гідроциліндра 2, а фреза займає робоче положення, при якому розмикається кінцевий вимикач 9 і вікна золотника перекри­ваються його поршнями.

В умовах паливно-енергетичної кризи перспективним є застосу­вання електропривода мотоблоків, що використовуються на присадиб­них ділянках та у фермерських господарствах. Інтенсивний пошук оптимальних рішень у цьому напрямі ведеться в науково-дослідних установах України.

Широке впровадження на зернотоках одержали самопересувні машини для післязбиральної обробки зерна: зернозавантажувачі, протравлювачі, зерноочисні машини. Електроенергію до них підводять гнучким кабелем, прокладеним по поверхні току.

Насіннєочисна машина СМ-4 призначена для вторинного очищення зерна і сортування насіння різних культур. Робочі органи машини – завантажувальний скребковий транспортер із шнековими живильниками, два вентилятори, решітний стан, двопотокова норія, трієрний блок і механізм самопересування – приводяться в рух від двох асинхронних електродвигунів.

Рис. 4.22. Принципова електрична схема керування