
- •МАТЕМАТИКА
- •ЗАДАНИЯ ДЛЯ ОРГАНИЗАЦИИ САМОСТОЯТЕЛЬНОЙ РАБОТЫ
- •ВВЕДЕНИЕ
- •Раздел. I. ЛИНЕЙНАЯ АЛГЕБРА
- •Тема 1. Линейная алгебра
- •1.1. Вычисление определителей
- •1.1.1. Вопросы для самостоятельного изучения
- •1.1.1.1. Определения
- •1.1.1.2. Свойства определителей
- •1.1.2. Контрольные вопросы
- •1.2. Действия над матрицами
- •1.2.1. Вопросы для самостоятельного изучения
- •1.2.1.1. Действия над матрицами
- •1.2.1.2. Обратная матрица
- •1.2.1.3. Ранг матрицы
- •1.2.2. Контрольные вопросы
- •1.3. Решение систем линейных алгебраических уравнений
- •1.3.1. Вопросы для самостоятельного изучения
- •1.3.1.1. Метод Крамера решения систем линейных уравнений
- •1.3.1.2. Матричный метод решения систем линейных уравнений
- •1.3.1.3. Метод Гаусса
- •1.3.1.5. Теорема Кронекера–Капели
- •1.3.2. Контрольные вопросы
- •1.3.3. Практическое задание для самостоятельной работы
- •Тема 2. Векторная алгебра
- •2.1. Векторы. Линейные операции над векторами
- •2.1.1. Вопросы для самостоятельного изучения
- •2.1.1.1. Определения
- •2.1.1.2. Линейные операции над векторами
- •2.1.1.3. Координаты вектора, линейные операции над векторами в координатах
- •2.1.1.4. Линейные операции над векторами в координатах
- •2.1.1.5. Деление отрезка в данном отношении
- •2.1.2. Контрольные вопросы
- •2.2. Произведения векторов
- •2.2.1. Вопросы для самостоятельного изучения
- •2.2.1.1. Скалярное произведение векторов
- •2.2.1.2. Векторное произведение векторов
- •2.2.1.3. Смешанное произведение векторов
- •2.2.2. Контрольные вопросы
- •2.3. Комплексные числа
- •2.3.1. Вопросы для самостоятельного изучения
- •2.3.1.1. Определения
- •2.3.1.2. Правила арифметических действий над комплексными числами в алгебраической форме
- •2.3.1.3. Тригонометрическая форма комплексного числа
- •2.3.1.4. Показательная форма комплексного числа. Формула Эйлера
- •2.3.1.5. Действия над комплексными числами в показательной форме
- •2.3.2. Контрольные вопросы
- •2.3.3. Практическое задание для самостоятельной работы
- •Тема 3. Аналитическая геометрия
- •3.1. Основные задачи аналитической геометрии
- •3.1.1. Вопросы для самостоятельного изучения
- •3.1.2. Контрольные вопросы
- •3.2. Кривые второго порядка
- •3.2.1. Вопросы для самостоятельного изучения
- •3.2.2. Контрольные вопросы
- •3.2.3. Практическое задание для самостоятельной работы
- •Раздел. II. МАТЕМАТИЧЕСКИЙ АНАЛИЗ
- •Тема 4. Предел функции
- •4.1. Элементы теории множеств. Понятие функции
- •4.1.1. Вопросы для самостоятельного изучения
- •4.1.1.1. Элементы теории множеств
- •4.1.1.2. Операции над множествами
- •4.1.1.3. Отображение множеств. Мощность множества.
- •4.1.1.4. Употребление математической символики. Кванторы общности, существования и единственности
- •4.1.1.5. Числовые множества
- •4.1.1.6. Подмножества множества (интервалы)
- •4.1.1.7. Окрестность точки
- •4.1.1.8. Понятие функции
- •4.1.1.9. Элементарные функции, свойства функции
- •4.1.1.10. Четность, нечетность.
- •4.1.2. Контрольные вопросы
- •4.2. Теория пределов
- •4.2.1. Вопросы для самостоятельного изучения
- •4.2.1.1. Числовая последовательность
- •4.2.1.2. Предел числовой последовательности
- •4.2.1.3. Бесконечно малые и бесконечно большие функции
- •4.2.1.4. Предел функции
- •4.2.1.5. Сравнение бесконечно малых функций
- •4.2.1.6. Замечательные пределы
- •4.2.2. Контрольные вопросы
- •4.3. Предел и непрерывность функции
- •4.3.1. Вопросы для самостоятельного изучения
- •4.3.1.1. Односторонние пределы
- •4.3.1.2. Необходимое и достаточное условие существования предела
- •4.3.1.3. Непрерывность функции
- •4.3.1.4. Точки разрыва и их классификация
- •4.3.1.5. Свойства непрерывных функций
- •4.3.2. Контрольные вопросы
- •4.3.3. Практическое задание для самостоятельной работы
- •Тема 5. Дифференциальное исчисление
- •5.1. Вычисление производных
- •5.1.1. Вопросы для самостоятельного изучения
- •5.1.1.1. Производная функции
- •5.1.1.2. Правило дифференцирования по шагам
- •5.1.1.3. Геометрический смысл производной.
- •5.1.1.4. Правила и формулы дифференцирования
- •5.1.1.5. Таблица производных:
- •5.1.1.6. Производная сложной функции
- •5.1.1.7. 1. Логарифмическое дифференцирование
- •5.1.1.8. Производные высших порядков
- •5.1.1.9. . Дифференциал функции, его свойства
- •5.1.2. Контрольные вопросы
- •5.1.3. Практическое задание для самостоятельной работы
- •5.2. Исследование функций на экстремумы и интервалы монотонности
- •5.2.1. Вопросы для самостоятельного изучения
- •5.2.1.1. Условия возрастания и убывания функции
- •5.2.1.2. Точки экстремума функции, необходимое условие экстремума
- •5.2.1.3. Первый достаточный признак экстремума функции
- •5.2.1.4. Схема исследования функции на возрастание, убывание и экстремумы
- •5.2.1.5. Второй достаточный признак экстремума функции
- •5.2.1.6. Второй способ исследования функции на экстремум
- •5.2.1.7. Наибольшее и наименьшее значения функции на отрезке
- •5.2.1.8. Выпуклость, вогнутость графика функции
- •5.2.1.9. Точки перегиба. Необходимое и достаточное условие перегиба.
- •5.2.1.10. Исследование функции на выпуклость, вогнутость, точки перегиба
- •5.2.1.11. Асимптоты графика функции
- •5.2.1.12. Общая схема исследования функции
- •5.2.2. Контрольные вопросы
- •5.3. Исследование функций двух переменных
- •5.3.1. Вопросы для самостоятельного изучения
- •5.3.1.1. Экстремумы функции двух переменных, необходимое условие экстремума
- •5.3.1.2. Достаточные условия экстремума
- •5.3.2. Контрольные вопросы
- •5.3.3. Практическое задание для самостоятельной работы
- •Тема 6. Интегральное исчисление
- •6.1. Решение задач на нахождение неопределенных интегралов. Нахождение неопределенных интегралов различными методами
- •6.1.1. Вопросы для самостоятельного изучения
- •6.1.1.1. Неопределенный интеграл
- •6.1.1.2. Свойства неопределенного интеграла
- •6.1.1.3. Таблица интегралов
- •6.1.1.4. Метод интегрирования по частям
- •6.1.1.5. Рациональные дроби
- •6.1.1.6. Интегрирование простейших рациональных дробей
- •6.1.1.7. Интегрирование рациональных дробей
- •6.1.1.8. Метод замены переменной (метод подстановки)
- •6.1.1.9. Интегрирование иррациональных выражений
- •6.1.2. Контрольные вопросы
- •6.2. Вычисление определенных интегралов. Приложения определенного интеграла. Исследование сходимости несобственных интегралов
- •6.2.1. Вопросы для самостоятельного изучения
- •6.2.1.1. Определение определенного интеграла
- •6.2.1.2. Свойства определенного интеграла:
- •6.2.1.3. Вычисление определенного интеграла, физические приложения определенного интеграла
- •6.2.1.4. Интегрирование по частям в определенном интеграле
- •6.2.1.5. Формула замены переменной в определенном интеграле
- •6.2.1.6. Приложения определенного интеграла
- •6.2.1.7. Площадь плоской фигуры
- •6.2.1.8. Объем тела вращения
- •6.2.1.9. Несобственные интегралы с бесконечным верхним пределом интегрирования
- •6.2.2. Контрольные вопросы
- •6.2.3. Практическое задание для самостоятельной работы
- •7.1. Сходимость знакоположительных рядов
- •7.1.1. Вопросы для самостоятельного изучения
- •7.1.1.1. Числовой ряд, сумма ряда, свойства рядов
- •7.1.1.2. Необходимый признак сходимости ряда
- •7.1.1.3. Признаки сходимости знакоположительных рядов
- •7.1.2. Контрольные вопросы
- •7.2. Исследование сходимости знакочередующихся рядов
- •7.2.1. Вопросы для самостоятельного изучения
- •7.2.1.1. Знакочередующиеся ряды, признак Лейбница
- •7.2.1.2. Признак абсолютной сходимости знакопеременного ряда
- •7.2.1.3. Схема исследования знакочередующихся рядов на сходимость
- •7.2.2. Контрольные вопросы
- •Тема 8. Функциональные ряды
- •8.1. Нахождение интервала и радиуса сходимости степенных рядов
- •8.1.1. Вопросы для самостоятельного изучения
- •8.1.1.1. Функциональные ряды
- •8.1.1.2. Область сходимости степенного ряда
- •8.1.1.3. Схема нахождения области сходимости степенного ряда
- •8.1.1.4. Ряд Тейлора
- •8.1.1.5. Разложение основных элементарных функций в степенные ряды
- •8.1.2. Контрольные вопросы
- •8.1.3. Практическое задание для самостоятельной работы
- •Раздел. IV. ВЫЧИСЛИТЕЛЬНАЯ МАТЕМАТИКА
- •Тема 9. Численные методы
- •9.1. Нахождение корней уравнений итерационным методом
- •9.1.1. Вопросы для самостоятельного изучения
- •9.1.1.1. Постановка задачи
- •9.1.1.2. Графический метод
- •9.1.1.3. Отделение корней
- •9.1.1.4. Метод деления отрезка пополам
- •9.1.1.5. Метод хорд
- •9.1.1.6. Метод итераций
- •9.1.1.7. Достаточное условие применимости метода итераций
- •9.1.2. Контрольные вопросы
- •9.2. Примеры численного интегрирования
- •9.2.1. Вопросы для самостоятельного изучения
- •9.2.1.1. Формулы прямоугольников
- •9.2.1.2. Формула трапеций
- •9.2.1.3. Формула Симпсона
- •9.2.2. Контрольные вопросы
- •9.3. Примеры численного интерполирования
- •9.3.1. Вопросы для самостоятельного изучения
- •9.3.1.1. Интерполяционная формула Лагранжа
- •9.3.1.2. Интерполяционная формула Ньютона
- •9.3.1.3. Линейное интерполирование
- •9.3.2. Контрольные вопросы
- •Раздел. V. ТЕОРИЯ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКАЯ СТАТИСТИКА
- •Тема 10. Случайные события
- •10.1. Задачи на вычисление классической вероятности и относительной частоты
- •10.1.1. Вопросы для самостоятельного изучения
- •10.1.1.1. Случайные события
- •10.1.1.2. Определение вероятности события
- •10.1.1.3. Теоремы сложения и умножения. Условная вероятность
- •10.1.1.4. Формула полной вероятности и формула Байеса
- •10.1.2. Контрольные вопросы
- •Тема 11. Случайные величины
- •11.1. Законы распределения случайной величины
- •11.1.1. Вопросы для самостоятельного изучения
- •11.1.1.1. Случайные величины
- •11.1.1.2. Дискретная случайная величина
- •11.1.1.3. Непрерывная случайная величина
- •11.1.1.4. Нормальный закон распределения случайной величины
- •11.1.1.5. Биномиальный закон распределения. Формула Бернулли
- •11.1.2. Контрольные вопросы
- •Тема 12. Математическая статистика
- •12.1. Методы математической статистики
- •12.1.1. Вопросы для самостоятельного изучения
- •12.1.1.1. Случайная выборка из генеральной совокупности, ее табличное представление
- •12.1.1.2. Графическое представление случайной выборки
- •12.1.1.3. Точечные и интервальные оценки
- •12.1.1.4. Проверка статистических гипотез
- •12.1.2. Контрольные вопросы
- •12.1.3. Практическое задание для самостоятельной работы
- •РЕКОМЕНДУЕМАЯ ЛИТЕРАТУРА
Какую работу нужно написать?
РАЗДЕЛ. V. ТЕОРИЯ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКАЯ СТАТИСТИКА
Тема 10. Случайные события
10.1. Задачи на вычисление классической вероятности и относительной частоты
10.1.1.Вопросы для самостоятельного изучения
10.1.1.1.Случайные события
Испытание – это действие, которое может повторяться при неизменных условиях любое число раз.
Случайное событие – это любой случайный результат испытания, то есть событие, которое может произойти или не произойти в результате испытания.
Достоверное событие – это событие, которое обязательно произойдет в результате испытания. Обозначается Ω. .
Невозможное событие – это событие, которое никогда не произойдет в результате испытания. Обозначается .
Множество элементарных исходов – это множество попарно несовмест-
ных случайных событий, одно (и только одно) из которых обязательно является результатом испытания. Обозначение: Е1, Е2 ,.... Говорят, что множество эле-
ментарных исходов образует полную группу событий.
Геометрическое изображение случайных событий (диаграмма Эйле- ра-Венна)
Достоверное событие Ω – это прямоугольник, случайное событие А – это область в прямоугольнике (Рис. 10.1.1), совместные события – это пересекающиеся области (Рис. 10.1.2).
135

А |
В |
|
А |
||
|
||
Ω |
Ω |
|
РИС. 10.1.1 |
РИС. 10.1.2 |
|
Действия над событиями |
|
|
Суммой событий А и В называется событие |
А+ В – «произошло хотя |
|
бы одно из событий А или В». |
|
Произведением событий А и В называется событие АВ – « произошли оба события А и В».
Событие А – «событие А не произошло» называется противоположным к событию А.
Введенные действия над событиями могут быть представлены на диа-
грамме Эйлера–Венна (Рис. 10.1.3-Рис. 10.1.5).
В |
В |
А |
|
А |
А |
||
|
|||
Ω |
Ω |
Ω |
|
А+ В |
АВ |
А |
|
РИС. 10.1.3 |
РИС. 10.1.4 |
РИС. 10.1.5 |
Действия над событиями обладают следующими свойствами:
1)А+ В = В + А, АВ = ВА;
2)(А+ В)С = АС + ВС ;
3)А+ А= А, АА= А;
4) |
А+ |
|
|
|
|
|
|
|
|
|
|
= ; |
||||
А |
= Ω, ; АА |
|||||||||||||||
5) |
|
= |
|
|
|
|
|
|
|
|
|
|||||
А+ В |
|
|||||||||||||||
АВ |
, АВ= А + В; |
6) Ω + = Ω, Ω = .
136

10.1.1.2. Определение вероятности события
а) Статистическое определение вероятности
Пусть n – число проведенных испытаний,
nА – число испытаний, в которых произошло событие А.
Тогда число pˆ = ппА называется частотой события А.
Вероятностью события А называется число Р(А) , около которого стаби-
лизируется частота рˆ события А при увеличении числа испытаний п. Таким образом, имеем
pˆ →P(A) .
n→ ∞
б) Классическое определение вероятности
Вероятностью события А называется число
Р(А) = тп ,
где п – число элементарных исходов испытания, а т – число элементарных исходов, благоприятствующих событиюА.
10.1.1.3. Теоремы сложения и умножения. Условная вероятность
Теорема сложения. Для любых случайных событий А и В справедлива формула
Р( А+ В) = Р(А) + Р(В) − Р(АВ) .
Следствия:
1) если события А и В несовместны (т.е. АВ = , Р(АВ) = 0), то формула приобретает вид
Р( А+ В) = Р(А) + Р(В) ,
что соответствует третьей аксиоме вероятностей.
2) так как А и А несовместные события, и А+ А = Ω – достоверное событие, то
1 = Р(Ω) = Р(А+ А) = Р(А) + Р(А) .
Следовательно,
137

Р( А) =1 − Р( А) , Р(А) =1 − Р(А) .
3) для любых трех случайных событий А, В,С имеет место формула
Р( А+ В + С) = Р(А) + Р(В) + Р(С) − Р(АВ) − Р(АС) − Р(ВС) + Р(АВС) .
События А и В называются зависимыми, если вероятность события В (или А) зависит от того, произошло А (или В) или нет.
Условной вероятностью Р(ВА) события В называется вероятность со-
бытия В при условии, что событие А произошло.
Аналогично, Р(В А) – вероятность события В при условии, что событие
А не произошло.
Теорема умножения. Для любых случайных событий А, В справедлива
формула
Р(АВ) = Р(А) Р(В А) = Р(В) Р(А В) .
Следствия:
1)условная вероятность вычисляется по формуле
Р(ВА) = РР((АВА)) ;
2)если события А, В – независимы, а значит Р(ВА) = Р(В) , то
Р( АВ) = Р(А)Р(В) ; 3) для любых трех событий А, В,С имеет место формула
Р( АВС) = Р(А)Р(В А)Р(С АВ) ;
4) так как (A + B) + А В = Ω, и события А+ В и А В несовместны, то
Р( А+ В) + Р(А В) =1,
а значит
Р( А+ В) =1 − Р(А В) .
Эта формула может быть распространена на сумму любого числа событий
Р(А1+ А2+ + Ап) =1 − Р(А1 А2 …Ап) .
10.1.1.4.Формула полной вероятности и формула Байеса
Рассмотрим некоторое испытание и случайное событие А, которое может произойти в результате испытания. Предположим, что наступление события А
138