- •3. Биоэнергетика мышечной работы
- •1. Источники энергии, обеспечивающие мышечную работу
- •2. Реакции ресинтеза (восстановления) атф
- •3. Анаэробные реакции ресинтеза атф
- •4. Аэробная реакция ресинтеза атф
- •5. Соотношение процессов аэробного и анаэробного ресинтеза атф при мышечной работе разной мощности и длительности
- •4. Биохимические изменения в организме при мышечной деятельности
- •1. Факторы, влияющие на биохимические изменения при мышечной деятельности
- •2. Особенности обеспечения мышц кислородом при мышечной деятельности
- •3. Биохимические изменения в мышцах при мышечной деятельности
- •4. Биохимические изменения в других органах и тканях
- •5. Биохимические изменения в организме при утомлении и в период отдыха
- •1. Общая характеристик утомления
- •2. Биохимическая характеристика мышц при утомлении
- •3. Борьба с утомлением
- •4. Биохимические изменения в организме в период отдыха (восстановления)
- •5. Влияние активного отдыха на восстановление
- •Биохимические основы спортивной тренировки
- •1. Общая биохимическая характеристика спортивной тренировки
- •2. Биохимические принципы спортивной тренировки
- •7. Биохимическая характеристика тренированного организма
- •1. Общая биохимическая характеристика тренированного организма
- •2. Биохимические изменения в организме при растренировке и перетренировке
- •3. Биохимические особенности тренированной мышцы
- •4. Биохимические особенности других органов и тканей тренированного организма
- •5. Биохимическая адаптация организма в процессе тренировки
- •8. Биохимическая характеристика качеств двигательной деятельности и методы их развития
- •1. Общая биохимическая характеристика качеств двигательной деятельности
- •2. Биохимические основы силы, быстроты (скорости), скоростно-силовых качеств и методы их развития
- •3. Биохимические основы выносливости и методы ее развития
- •4. Биохимическая характеристика ловкости и методы ее развития
- •5. Биохимическая характеристика гибкости и методы ее развития
- •6. Некоторые факторы, которые необходимо учитывать при развитии двигательных качеств
- •9. Высшая нервная (кортикальная) и эндокринная регуляция обмена веществ при выполнении спортивных упражнений
- •1. Общая характеристика нервной и эндокринной регуляции обмена веществ при мышечной деятельности
- •2. Кортикальная регуляция обмена веществ при мышечной деятельности в зависимости от условий выполнения работы и отношения спортсмена к ним
- •3. Кортикальная регуляция обмена веществ в предстартовом состоянии
- •4. Влияние кортикальной регуляции на биохимические механизмы обмена веществ
- •5. Влияние эндокринной регуляции на биохимические механизмы обмена веществ при мышечной деятельности
- •10. Биохимическая характеристика различных видов спорта
- •1. Общая биохимическая характеристика различных видов спорта
- •2. Биохимические изменения в организме при занятиях циклическими видами спорта (физическими упражнениями)
- •2.1. Биохимические изменения в организме при занятиях легкой атлетикой
- •2.2. Биохимические изменения в организме при занятиях лыжными и конькобежными гонками
- •2.3. Биохимические изменения в организме при занятиях плаванием
- •2.4. Биохимические изменения в организме при занятиях велосипедным спортом
- •2.5. Биохимические изменения в организме при занятиях греблей
- •3. Биохимические изменения в организме при занятиях ациклическими видами спорта (физическими упражнениями)
- •3.1. Биохимические изменения в организме при занятиях легкой атлетикой
- •3.2. Биохимические изменения в организме при занятиях тяжелоатлетическими упражнениями
- •3.3.Биохимические изменения в организме при единоборствах (бокс, борьба)
- •3.4. Биохимические изменения в организме при фехтовании
- •3.5. Биохимические изменения в организме при занятиях гимнастикой
- •3.6. Биохимические изменения в организме при занятиях спортивными играми
- •11. Биохимический контроль в спорте
- •1. Общая характеристика биохимического контроля в спорте
- •2. Объекты (пробы, препараты) биохимических исследований и определяемые в них биохимические показатели
- •2.1. Выдыхаемый воздух
- •2.2. Кровь
- •2.3. Моча
- •2.4. Слюна
- •2.5. Пот
- •2.6. Микробиопсия мышц
- •3. Тестирующие нагрузки
- •4. Биохимические изменения при стандартной и максимальной работе в зависимости от уровня тренированности
- •5. Определение уровня общей тренированности спортсмена
- •6. Определение уровня специальной тренированности
2. Биохимические основы силы, быстроты (скорости), скоростно-силовых качеств и методы их развития
Исходя из проявляемой силы и быстроты (скорости) мышечного сокращения, физические упражнения подразделяются на собственно силовые, скоростные и скоростно-силовые (С-С) (8.5).
Качество силы(8.1) характеризует способность спортсмена к максимальному мышечному напряжению, которое могут развивать мышцы при сокращении (например, поднятие штанги).
Качество быстроты(8.1) характеризует способность спортсмена к совершению сложных ациклических движений в минимальный отрезок времени (например, фехтование, метания, спортивные игры, прыжки и т.п.), так и к прохождению в максимальном темпе дистанции в циклических упражнениях (например, различные виды спринтерских дистанций).
Биохимические основы силы, быстроты и С-С качествво многом являются схожими (общими) и сводятся к следующим критериям:
Степень гипертрофии МВ.
Соотношение в мышцах быстрых и медленных волокон; быстрых гликолитических (БГ) и быстрых окислительно-гликолитических (БОГ) МВ.
Уровень АТФ-азной активности миозина; интенсивность анаэробных реакций ресинтеза АТ.
Уровень в мышцах креатинфосфата (КФ) и гликогена.
Уровень механизмов внутримышечной и межмышечной координации.
Установлено также, что основными биохимическими факторами, лимитирующими проявление силы, быстроты (скорости) и С-С качеств являются следующие зависимости (хотя и не носящие линейного характера):
Зависимость между максимальной мышечной силой и мышечной массой.
Зависимость между максимальной скоростью сокращения мышц и АТФ-азной активностью миозина
Зависимость между максимальной мощностью (сила х скорость) и АТФ-азной активностью миозина (8.6).
Биохимические исследования мышц экспериментальных животных и мышц спортсменов показали, что силовые, скоростные и С-С тренировки сопровождаются активной гипертрофией мышц (МВ), благодаря стимуляции биосинтеза сократительных белков (миозина и актина), что приводит к увеличению толщины МВ, к увеличению мышечной массы (8.7, 8.8). Увеличивается доля БГ и уменьшается – БОГ (8.9). При этом степень гипертрофии БО МВ значительно больше, чем МО МВ (8.9). Это приводит не только к увеличению мышечной массы, но и силы и скорости сокращения мышц.
Такие направленные тренировки стимулируют возрастание АТФ-азной активности миозина, а, следовательно, к способности мышц к быстрой мобилизации химической энергии АТФ и превращении ее в механическую энергию мышечного сокращения. Возрастает эффективность анаэробных реакций ресинтеза АТФ: креатинкиназного (в большей степени в силовых и скоростных тренировках) и гликолитического (в большей степени в С-С тренировках) (8.7, 8.8), т.к. в последнем случае наблюдается возрастание О2-долга (8.10).
Известно, что проявляемая мышечная сила при динамических упражнениях находится в обратной зависимости от скорости и длительности мышечных сокращений. Чем выше скорость движения, чем длительнее мышечная работа, - тем меньше проявляемая сила, и наоборот (8.11). Поэтому в силовых, скоростных и, особенно, в С-С тренировках добиваются не изолированного увеличения силы либо скорости, но их сочетанного проявления, которое оценивается мощностью (8.1) развиваемого усилия. Максимальное значение этих ДК достигается при предельно высокой концентрации волевого усилия.
Основными методами развития силы, быстроты (скорости) и С-С качествявляется использование таких тренировочных упражнений, которые обеспечивают соответственно гипертрофию мышц, повышают активность ферментов креатинкиназного (в первую очередь) и гликолитического ресинтеза АТФ в мышцах.
В частности, основными методами развития силы являются:
Умеренное число повторных силовых упражнений, обеспечивающих максимальное напряжение мышц (например, поднятие штанги) с внешней нагрузкой не менее 70% от максимальной изометрической силы, – стимулирующей гипертрофию быстрых гликолитических МВ, максимальную активность креатинкиназного ресинтеза АТФ.
Упражнения с большим числом повторных мышечных сокращений, обеспечивающих скорость сокращения мышц (например, бег, плавание), - стимулирующих гипертрофию быстрых окислительно-гликолитических МВ, максимальную активность креатинкиназного и гликолитического ресинтеза АТФ.
Основными методами развития быстроты (скорости)являются:
Умеренное число повторных скоростных упражнений, обеспечивающих скорость мышечного сокращения (например, спринтерский бег, плавание и т.п.) с мощностью не менее 70% от максимальной, - стимулирующих максимальную активность креатинкиназного (в первую очередь) и гликолитического ресинтеза АТФ; внутримышечную и межмышечную координацию.
Небольшое число повторных силовых упражнений, обеспечивающих силу сокращения с внешней нагрузкой не менее 40 % от максимальной изометрической силы, - стимулирующих гипертрофию быстрых гликолитических МВ, максимальную активность гликолитического ресинтеза АТФ.
Основными методами развития С-С качествявляются:
Умеренное число повторных С-С упражнений, обеспечивающих большую мощность работы (например, спринтерские дистанции), близкие по своей структуре к соревновательным, или соревновательные (но не ниже 40-70 % от максимальной мощности), - стимулирующие АТФ-азную активность миозина, активность ферментов креатинкиназного (в первую очередь) и гликолитического ресинтеза АТФ, гипертрофию быстрых гликолитических МВ, внутримышечную и межмышечную координацию.
Умеренное число повторных силовых упражнений, с внешней нагрузкой не менее 40 % от максимальной изометрической силы, - стимулирующих гипертрофию быстрых гликолитических МВ, максимальную активность гликолитического ресинтеза АТФ.