
- •Теоретические основы электротехники
- •Часть 1. Теория линейных цепей (продолжение) т10. Четырехполюсники и фильтры
- •Уравнения четырехполюсника
- •2. Схемы замещения четырехполюсника
- •3. Определение коэффициентов четырехполюсника
- •4. Способы соединения четырехполюсников
- •5. Характеристические параметры симметричного четырехполюсника
- •6. Основные понятия и определения электрических фильтров
- •Коэффициентом передачи напряжения фильтра называется отношение комплексных выходного напряжения ко входному:
- •8. Фильтры нижних частот типа к
- •9. Фильтры верхних частот типа к.
- •10. Полосовые фильтры
- •11. Заграждающие фильтры
- •Т11. Электрические цепи с распределенными параметрами
- •Общие определения
- •2. Дифференциальные уравнения цепи с распределенными параметрами
- •3. Решение уравнений линии с распределенными параметрами в установившемся синусоидальном режиме
- •4. Волновые процессы в линии с распределенными параметрами.
- •5. Линия с распределенными параметрами в различных режимах
- •6. Линия с распределенными параметрами без искажений
- •7. Линия с распределенными параметрами без потерь
- •Графические диаграммы названных функций показаны на рис. 2.
- •8. Переходные процессы в линии с распределенными параметрами
- •9. Расчет падающих волн в линии с распределенными параметрами при подключении ее к источнику эдс
- •10. Расчет отраженных волн в линии с распределенными параметрами при подключении ее к источнику эдс
- •Расчет переходного процесса в линии с учетом многократных отражений волн
- •Т12. Синтез электрических цепей
- •2. Свойства входных операторных функций пассивных электрических цепей
- •3. Синтез двухполюсника лестничной (цепной) схемой
- •4. Синтез двухполюсника методом разложения входной функции на простейшие составляющие
- •Часть 2. Теория нелинейных цепей т1. Нелинейные цепи постоянного тока
- •1. Нелинейные элементы, их характеристики и параметры
- •2. Нелинейные цепи и их свойства
- •3. Графический метод расчета простых нелинейных цепей
- •4. Графический метод расчета нелинейной цепи с несколькими источниками эдс
- •5. Комбинированный графоаналитический метод расчета нелинейной цепи с одним или двумя нелинейными элементами
- •6. Аппроксимация вах нелинейных элементов
- •7. Аналитические методы расчета нелинейных цепей
- •Т2. Нелинейные магнитные цепи постоянного потока
- •1. Основные понятия и законы магнитной цепи
- •3. Расчет неразветвленной магнитной цепи
- •4. Расчет разветвленной магнитной цепи
- •5. Расчет магнитной цепи с постоянным магнитом
- •Т3. Нелинейные цепи переменного тока.
- •1. Общая характеристика нелинейных цепей переменного тока и методов их исследования
- •2. Замена несинусоидальных функций u(t) и I(t) эквивалентными синусоидальными
- •3. Методы расчета нелинейных цепей переменного тока на основе вах для эквивалентных синусоид
- •4. Резонансные явления в нелинейных цепях
- •5. Нелинейная катушка с сердечником на переменном токе
- •6. Трансформатор с сердечником и его схема замещения
- •7. Управляемая катушка индуктивности
- •8. Расчет мгновенных значений параметров режима графическим методом
- •9. Расчет мгновенных значений параметров режима гармоническими методами
- •10. Преобразователь частоты в 3 раза на нелинейных катушках
- •11. Расчет мгновенных значений параметров режима методом численного интегрирования системы дифференциальных уравнений.
- •Т4. Переходные процессы в нелинейных цепях
- •1. Общая характеристика переходных процессов в нелинейных цепях
- •Расчет переходного процесса методом интегрируемой аппроксимации
- •3. Расчет переходного процесса методом кусочно-линейной аппроксимации
- •4. Расчет переходного процесса методом линеаризации дифференциального уравнения
- •5. Расчет переходного процесса методом численного интегрирования дифференциального уравнения
- •Т5. Магнитные цепи переменного потока.
- •1. Потери в сердечниках из ферромагнитного материала при периодическом перемагничивании.
- •2. Расчет магнитной цепи переменного потока комплексным методом
- •Часть 3. Теория электромагнитного поля т1. Электростатическое поле
- •1. Основные понятия и определения
- •2.Уравнения электростатического поля в интегральной и дифференциальной форме
- •3. Граничные условия в электростатическом поле
- •4. Уравнение Пуассона и Лапласа. Теорема единственности решения
- •5. Электростатическое поле осевых зарядов
- •6. Электростатическое поле и емкость двухпроводной линии
- •7. Электростатическое поле и емкость цилиндрического провода, расположенного над проводящей плоскостью (землей)
- •8. Поле многопроводной линии. Метод зеркальных отображений
- •9. Электрическое поле трехфазной линии электропередачи
- •Т2. Электрическое поле постоянного тока
- •1. Законы электрического поля в интегральной и дифференциальной формах
- •2. Методы расчета электрических полей постоянного тока
- •T3. Магнитное поле постоянных токов
- •1. Уравнения магнитного поля в интегральной и дифференциальной формах
- •2. Векторный потенциал магнитного поля
- •3. Скалярный потенциал магнитного поля
- •4. Магнитное поле цилиндрического проводника с током
- •5. Магнитное поле двухпроводной линии
- •6. Взаимная индуктивность двух параллельных линий
- •7. Магнитное поле сложной системы проводов с током
- •8. Механические силы в магнитном поле
- •Т4. Переменное электромагнитное поле
- •Основные уравнения Максвелла и их физический смысл
- •Для стационарного поля и, тогда первое уравнение Максвелла превращается в уравнения магнитного поля постоянного тока:
- •2. Теорема Умова-Пойтинга для электромагнитного поля
- •3. Поток вектора Пойтинга в коаксиальном кабеле
- •4. Уравнения Максвелла в комплексной форме
- •5. Плоская гармоническая волна в диэлектрике
- •6. Плоская гармоническая волна в проводящей среде
- •7. Поверхностный эффект в плоском листе
- •8. Поверхностный эффект в круглом проводе
Т11. Электрические цепи с распределенными параметрами
Общие определения
Параметры электрических цепей в той или иной мере всегда распределены вдоль длины отдельных участков. В большинстве практических случаев распределением параметров вдоль длины пренебрегают и представляют электрическую цепь эквивалентной схемой с сосредоточенными схемными элементами R , L и C.
Однако существует большой класс электрических цепей, для которых пренебрежение распределением параметров вдоль длины приводит к существенным погрешностям при их расчёте и становится неприемлемым.
Из
курса физики известно, что электромагнитное
поле распространяется вдоль электрической
цепи не мгновенно, а с конечной скоростью
υ,
проходя всю длину цепи l
за время
.
Если за время∆t
режимные параметры в цепи (u,
ί) изменяются
незначительно и этим изменением можно
пренебречь, то для такой цепи пренебрегают
распределением параметров вдоль
длины и замещают ее схемой с
сосредоточенными элементами. Если за
время ∆t
режимные параметры в цепи (u,
ί) изменяются
на заметную величину, которую необходимо
учитывать в расчете, то такие цепи
считаются с распределенными параметрами
и расчет их проводится уже с учетам
распределения параметров вдоль их
длины.
Пример
1. Воздушная
линия электропередачи длиной l
= 50 км работает
на частоте ƒ = 50 Гц, скорость волны
υ=300000
км/с,
,
6000км,
с,
.
Таким образом, фазовый сдвиг для волн
напряжения и тока вначале и в конце
линии составляет всего 3,6о,
чем можно пренебречь и считать такую
линию как цепь сосредоточенными
параметрами.
Пример
2. Линия
электропередачи длиной l=500
км: ƒ = 50 Гц, υ=300000
км/с,
с,
.
Фазовый сдвиг для волн напряжения и тока в начале и конце линии составляет 36о, расчет режима в такой линии без учета распределения параметров по длине привел бы к существенным ошибкам, поэтому такую линию следует считать как цепь с распределенными параметрами.
Пример
3. Соединительный
кабель от комнатной антенны до входного
гнезда телевизора имеет длину l=2
м, телевизионный канал работает на
частоте ƒ=150 МГц, υ=200000
км/с,
с,
1,3
м,
с,
.
Вывод: соединительный кабель следует рассматривать как цепь с распределенными параметрами.
При
синусоидальном режиме цепи критерием
необходимости учета распределения
параметров по длине может служить
соотношение между длиной линии l
и длиной
волны
.
Еслиl<<
,то
цепь рассматривается как c сосредоточенными
параметрами (в примере 1:
),
еслиl
и
соизмеримы, то цепь рассматривается
как с распределенными параметрами (в
примере 2:
,
в примере 3:
).
К цепи с распределенными параметрами относятся все лини связи, линии электропередачи длиной l > 100 км.
Одни и те же электрические цепи в зависимости от формы воздействующего напряжения в одних случаях принимаются с распределенными параметрами, а в других с сосредоточенными параметрами. Например, обмотки силовых трансформаторов при расчете установившихся режимов в них на частоте ƒ=50 Гц считаются цепями с сосредоточенными параметрами, но при расчете переходных процессов, возникающих в результате коммутации или атмосферных разрядов те же обмотки считаются цепями с распределенными параметрами.
Если параметры цепи распределены равномерно по ее длине, то цепь называется, однородной, если неравномерно ― то неоднородной. В курсе ТОЭ рассматриваются только однородные цепи.