- •Идз №1 Индивидуальные задания из задачника
- •Кинематика
- •Динамика
- •Законы сохранения импульса и механической энергии
- •Всемирное тяготение. Гравитационное поле
- •Динамика вращательного движения. Закон сохранения момента импульса
- •Неинерциальные системы отсчета
- •Элементы специальной теории относительности
- •Кинематика
- •Динамика
- •Законы сохранения импульса и механической энергии
- •Всемирное тяготение. Гравитационное поле
- •Динамика вращательного движения. Закон сохранения момента импульса
- •Неинерциальные системы отсчета
- •Элементы специальной теории относительности
- •Кинематика
- •Динамика
- •Законы сохранения импульса и механической энергии
- •Всемирное тяготение. Гравитационное поле
- •Динамика вращательного движения. Закон сохранения момента импульса
- •Неинерциальные системы отсчета
- •Элементы специальной теории относительности
- •Кинематика
- •Динамика
- •Законы сохранения импульса и механической энергии
- •Всемирное тяготение. Гравитационное поле
- •Динамика вращательного движения. Закон сохранения момента импульса
- •Неинерциальные системы отсчета
- •Кинематика
- •Динамика
- •Законы сохранения импульса и механической энергии
- •Динамика вращательного движения. Закон сохранения момента импульса
- •Неинерциальные системы отсчета
- •Элементы специальной теории относительности
- •Динамика
- •Законы сохранения импульса и механической энергии
- •Всемирное тяготение. Гравитационное поле
- •Динамика вращательного движения. Закон сохранения момента импульса
- •Неинерциальные системы отсчета
- •Кинематика
- •Динамика
- •Законы сохранения импульса и механической энергии
- •Всемирное тяготение. Гравитационное поле
- •Динамика вращательного движения. Закон сохранения момента импульса
- •Неинерциальные системы отсчета
- •Элементы специальной теории относительности
- •Кинематика
- •Динамика
- •Законы сохранения импульса и механической энергии
- •Всемирное тяготение. Гравитационное поле
- •Динамика вращательного движения. Закон сохранения момента импульса
- •Неинерциальные системы отсчета
- •Элементы специальной теории относительности
- •Динамика
- •Законы сохранения импульса и механической энергии
- •Всемирное тяготение. Гравитационное поле
- •Динамика вращательного движения. Закон сохранения момента импульса
- •Неинерциальные системы отсчета
- •Элементы специальной теории относительности
- •Кинематика
- •Динамика
- •Законы сохранения импульса и механической энергии
- •Всемирное тяготение. Гравитационное поле
- •Динамика вращательного движения. Закон сохранения момента импульса
- •Элементы специальной теории относительности
- •Кинематика
- •Динамика
- •Законы сохранения импульса и механической энергии
- •Всемирное тяготение. Гравитационное поле
- •Динамика вращательного движения. Закон сохранения момента импульса
- •Неинерциальные системы отсчета
- •Элементы специальной теории относительности
- •Кинематика
- •Динамика
- •Всемирное тяготение. Гравитационное поле
- •Динамика вращательного движения. Закон сохранения момента импульса
- •Неинерциальные системы отсчета
- •Элементы специальной теории относительности
- •Кинематика
- •Динамика
- •Законы сохранения импульса и механической энергии
- •Всемирное тяготение. Гравитационное поле
- •Динамика вращательного движения. Закон сохранения момента импульса
- •Неинерциальные системы отсчета
- •Элементы специальной теории относительности
- •Кинематика
- •Динамика
- •Законы сохранения импульса и механической энергии
- •Всемирное тяготение. Гравитационное поле
- •Динамика вращательного движения. Закон сохранения момента импульса
- •Неинерциальные системы отсчета
- •Кинематика
- •Динамика
- •Законы сохранения импульса и механической энергии
- •Всемирное тяготение. Гравитационное поле
- •Динамика вращательного движения. Закон сохранения момента импульса
- •Неинерциальные системы отсчета
- •Элементы специальной теории относительности
- •Неинерциальные системы отсчета
- •Элементы специальной теории относительности
- •Динамика
- •Законы сохранения импульса и механической энергии
- •Всемирное тяготение. Гравитационное поле
- •Динамика вращательного движения. Закон сохранения момента импульса
- •Неинерциальные системы отсчета
- •Элементы специальной теории относительности
- •Кинематика
- •Динамика
- •Всемирное тяготение. Гравитационное поле
- •Динамика вращательного движения. Закон сохранения момента импульса
- •Неинерциальные системы отсчета
- •Элементы специальной теории относительности
- •Кинематика
- •Динамика
- •Законы сохранения импульса и механической энергии
- •Всемирное тяготение. Гравитационное поле
- •Динамика вращательного движения. Закон сохранения момента импульса
- •Неинерциальные системы отсчета
- •Элементы специальной теории относительности
- •Кинематика
- •Динамика
- •Всемирное тяготение. Гравитационное поле
- •Динамика вращательного движения. Закон сохранения момента импульса
- •Неинерциальные системы отсчета
- •Элементы специальной теории относительности
- •Динамика
- •Законы сохранения импульса и механической энергии
- •Всемирное тяготение. Гравитационное поле
- •Динамика вращательного движения. Закон сохранения момента импульса
- •Неинерциальные системы отсчета
- •Кинематика
- •Динамика
- •Законы сохранения импульса и механической энергии
- •Всемирное тяготение. Гравитационное поле
- •Динамика вращательного движения. Закон сохранения момента импульса
- •Неинерциальные системы отсчета
- •Элементы специальной теории относительности
- •Кинематика
- •Динамика
- •Всемирное тяготение. Гравитационное поле
- •Динамика вращательного движения. Закон сохранения момента импульса
- •Кинематика
- •4 Динамика
- •Всемирное тяготение. Гравитационное поле
- •Динамика вращательного движения. Закон сохранения момента импульса
- •Элементы специальной теории относительности
- •Кинематика
- •Динамика
- •Законы сохранения импульса и механической энергии
- •Всемирное тяготение. Гравитационное поле
- •Динамика вращательного движения. Закон сохранения момента импульса
- •Неинерциальные системы отсчета
- •Элементы специальной теории относительности
Динамика вращательного движения. Закон сохранения момента импульса
1
.21.По какой
формуле можно вычислить момент инерции
произвольного по форме тела (см. рисунок)
относительно оси ОО?
1)
2)![]()
3)
![]()
2.21. Найти момент инерции равностороннего треугольника, сторонами которого являются однородные стержни длиной l = 20 см и массой m = 10 г, относительно оси, проходящей через пересечение высот этого треугольника и перпендикулярно его плоскости.
Ответ: J = 2104 кгм2.
3.21. Твердое тело с моментом инерции J вращается с угловым ускорением и мгновенной угловой скоростью вокруг своей оси. Чему равна мощность, сообщенная телу?
Ответ: P = (1/2)J.
4.21. Пользуясь приемом интегрирования, выведите формулу для определения момента инерции шара.
Ответ:
Неинерциальные системы отсчета
1.21. Какую работу совершает над частицей центробежная сила инерции при перемещении частицы с массой m (относительно системы отсчета, вращающейся с угловой скоростью ) из точки 1, отстоящую от оси вращения на расстояние r1, в точку 2, отстоящей от оси вращения на расстояние r2?
2.21. Во вращающейся системе отсчета частица массой m = 20 г переместилась из точки, отстоящей от оси вращения на расстояние R1 = 1 м, в точку, отстоящую на расстояние R2 = 2 м. При этом силы инерции совершили над частицей работу А, равную 2 Дж. Найти угловую скорость вращения системы отсчета.
Ответ: = 8,165 рад/с.
3.21. Горизонтально расположенный гладкий стержень АВ вращают с угловой скоростью = 2 рад/с вокруг вертикальной оси, проходящей через его конец А. По стержню свободно скользит муфточка массой m = 0,5 кг, движущаяся из точки А с некоторой начальной скоростью. В тот момент, когда муфточка находится на расстоянии r = 50 см от оси вращения, на нее действует сила Кориолиса, равная 3 Н. Найти начальную скорость муфточки.
Ответ:
м/с.
ЭЛЕМЕНТЫ СПЕЦИАЛЬНОЙ ТЕОРИИ ОТНОСИТЕЛЬНОСТИ
1.21. В чем состоит ограничение на величину энергии, которая может быть извлечена из массы покоя?
2.21. В лабораторной системе отсчета (К-система) пи-мезон с момента рождения до момента распада пролетел расстояние l = 75 м. Скорость v пи-мезона равна 0,995 с. Определить собственное время жизни мезона.
Ответ: = 25 мс.
3.21. Считая, что энергия покоя электрона равна 0,511 МэВ, вычислить: 1) импульс электрона с кинетической энергией, равной его энергии покоя; 2) кинетическую энергию электрона с импульсом 0,511 МэВ/с, где с – скорость света. (В настоящее время импульсы релятивистских частиц выражают в единицах – энергия, деленная на скорость света).
Ответ: Р = 0,9 МэВ/с; К = 0,21 МэВ.
4.21. Какую работу необходимо совершить, чтобы увеличить скорость частицы с массой покоя m0 от 0,6 до 0,8 с? Сравним полученный результат со значением, вычисленным по нерелятивистской формуле.
Ответ: А = 0,42m0с2; А = 0,14m0с2.
Вариант № 22.
Кинематика
1.22. Выведите уравнение траектории тела, брошенного горизонтально. Изобразите траекторию этого движения.
2.22. Мяч, брошенный вертикально вверх, упал на Землю через 3 с. Определите величину скорости мяча в момент падения.
Ответ: 15 м/с.
3.22. Тело брошено со скоростью v0 = 14,7 м/с под углом 30 к горизонту. Найти нормальное и тангенциальное ускорения тела через время t = 1,25 с после начала движения.
Ответ: 9,2 м/с2; 3,5 м/с2.
4.22. Легковой автомобиль движется со скоростью 20 м/с за грузовым, скорость которого 16,5 м/с. В момент начала обгона водитель легкового автомобиля увидел встречный автобус, движущийся со скоростью 25 м/с. При каком наименьшем расстоянии до автобуса можно начинать обгон, если в начале обгона легковая машина была в 15 м от грузовой, а к концу обгона она должна быть впереди грузовой на 20 м?
Ответ: 450 м.
