Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

14-es / Высшая математика (РТФ) / умк_Цывис_Функции_Интеграл. исчисл

..pdf
Скачиваний:
39
Добавлен:
18.05.2015
Размер:
4.7 Mб
Скачать

 

 

 

Пример 23. Вычислить интеграл

 

 

I =

 

 

 

 

 

3x2 + 2

 

dx .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x3 +

2x +10

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Решение. I =

 

3x2 + 2

dx =

 

d (x3 + 2x +10) = (3x2 + 2)dx

 

=

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x3

 

+ 2x +10

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

=

d (x3 + 2x +10)

= ln

 

x3 + 2x +10

 

+ C.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x3 + 2x +10

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

dx

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I =

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Пример 24. Вычислить интеграл

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

sin x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

× cos x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

dx

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

dx

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

dtgx

= ln

 

tgx

 

 

+ C .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Решение. I =

 

 

 

=

cos2 x

=

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

sin x cos x

 

 

 

tgx

 

 

 

 

 

 

 

 

tgx

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

или другим способом

 

данный интеграл вычислим следующим образом

I =

 

 

1× dx

=

 

(sin2 x + cos2 x)dx

 

=

 

 

sin2 xdx

 

 

+

 

 

 

 

cos2

 

xdx

 

=

sin xdx

 

+

sin x cos x

 

 

 

 

 

 

sin x cos x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

sin x cos x

cos x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

sin x cos x

 

 

 

 

 

 

 

 

 

 

+

cos xdx

= -

d cos x

+

d sin x

= -ln

 

cos x

 

+ ln

 

sin x

 

+ C = ln

 

tgx

 

+ C.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

sin x

 

 

 

cos x

 

 

 

 

 

 

 

 

sin x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

− 3)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I =

(ln x

dx

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Пример 25. Вычислить интеграл

 

 

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x

 

 

ln x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

- 3)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Решение.

I =

(ln x

dx

=

ln

xdx

 

- 3

 

 

 

dx

 

 

 

 

 

 

=

 

 

ln x

dx - 3

 

 

dx

 

=

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x ln x

x ln x

 

 

x ln x

 

 

 

 

 

 

 

 

 

 

 

x ln x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

1

 

 

 

 

 

= (ln x)

2

d ln x - 3(ln x)

 

 

 

2

d ln x =

2

ln

2

x - 3 × 2ln

2

x + C =

2

ln

2

x - 6ln

2

x + C.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Пример 26. Вычислить интеграл

 

 

 

 

I =

(sin x + cos x)dx

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3 sin x - cos x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Решение.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(sin x + cos x)dx

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

I =

=

 

(sin x - cos x)

3 d (sin x - cos x) =

(sin x - cos x)3 + C .

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(sin x - cos x)3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.3. Метод замены переменной или подстановки

Рассмотрим один из сильнейших методов интегрирования метод замены переменной или подстановки.

131

Теорема. Пусть функция

x = ϕ(t)

определена и дифференцируема

на [t1,t2 ] , а множество [ x1, x2 ]

множество значений этой функции, на

котором определена функция f(x). Если

на [ x1, x2 ] f(x) имеет первооб-

разную, то для любого t [t1,t2 ]

справедлива формула

 

f (x)dx =

 

x = j(t)

 

= f (j(t)) × j¢(t)dt

(1)

 

 

 

 

dx = j¢(t)dt

 

 

 

Формула (1) – формула замены переменной в неопределенном инте-

грале. Суть метода замены переменной в неопределенном интеграле

со-

стоит в следующем: интеграл, стоящий в правой части формулы (1) полу- чаем «проще» или табличного вида, чем интеграл, стоящий в левой части.

Доказательство. Равенство (1) – равенство двух первообразных, по- этому, дифференцируя обе части (1), получим

d (f (x)dx) = f (x)dx = x = j(t) = f (j(t)) × j¢(t)dt d (f (j(t)(t)dt) = f (j(t) × j¢(t))dt

Из последних равенств следует справедливость формулы (1).

Замечание. Если известен интеграл в правой части формулы (1), т.е.

f (j(t))(t)dt = F (t) + C .

Тогда искомый интеграл как функция от x находим следующим об-

разом: уравнение x = ϕ(t) решают относительно t, т.е. t = j−1(x) , получим

f (x)dx = f (j(t))(t)dt = F (t) + C = F (j−1(t)) + C .

Замечание. При интегрировании методом замены переменной очень важно удачно найти соответствующую подстановку, т.к. не существует об- щих правил выбора замены переменной для интегрирования любой функ- ции. Умение находить выгодные подстановки можно достичь практикой.

Пример 27. Вычислить интеграл I = x × x - 3dx .

x - 3 = t

Решение. I = x x - 3dx = x = t2 + 3 = (t2 + 3) ×t × 2tdt = 2(t4 + 6t2 )dt = dx = 2tdt

 

t5

 

6

 

2

5

3

 

= 2

+

t3 + C =

(x - 3)

2

+ 3(x - 3)

2

+ C.

 

 

 

5

3

5

 

 

 

 

 

132

 

 

Пример 28. Вычислить интеграл

 

I =

 

 

 

 

 

 

dx

 

 

 

 

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 + x2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x =

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

t

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

d (1 + t2 )

 

 

Решение.

I =

 

 

 

 

 

dx

 

 

 

 

 

=

 

 

 

 

 

 

 

dx = -

 

dt

 

 

 

 

 

 

 

 

 

 

 

= -

 

 

 

 

 

tdt

 

 

 

 

 

 

 

= -

 

1

=

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

t

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x

2 1

+ x

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 + t 2

 

 

 

 

1

+ t 2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 + t2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 + x2 =

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

t

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

= -

 

 

 

 

 

 

 

 

+ C = -

 

1 + x2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 + t2

 

+ C.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Пример 29. Вычислить интеграл

 

I =

 

 

a2 - x2 dx .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Решение.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x = a sin t

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I =

 

 

a2 - x2 dx =

dx = a costdt

 

 

 

 

= a2 cos2 tdt =

(1 + cos 2t)dt =

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a2 - x2

= a cost

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a2

 

 

a2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x

 

 

=

a2

 

arcsin

x

+

a2

sin 2(arcsin

x

) =

 

 

=

 

t +

sin 2t + C =

t = arcsin

 

 

 

 

 

 

a

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a

4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a

 

 

 

 

 

 

 

 

 

 

 

 

 

=

 

a2

 

arcsin

 

x

+

a2

 

sin(arcsin

x

 

) × cos(arcsin

 

x

) =

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

a

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a2

 

 

x

 

 

 

a2

 

 

 

 

x

 

 

 

 

+ C =

a2

 

arcsin

x

 

+

x

×

 

 

 

 

 

 

 

 

 

 

 

=

 

 

arcsin

+

 

 

×

 

 

 

a2

- x2

 

a2 - x2

+ C.

 

 

 

 

 

 

 

 

a2

 

 

 

 

 

 

2

 

 

 

 

 

 

 

a

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Пример 30. Вычислить интеграл

 

I =

 

 

 

 

 

 

 

 

 

 

 

dx

 

 

 

 

 

 

 

 

 

 

 

 

 

 

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(x

 

- a)(b - x)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Решение.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x = a cos2 t + bsin2 t

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x - a = (b - a)sin

2 t

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I =

 

 

 

 

 

 

 

dx

 

 

 

 

 

 

 

 

 

=

 

 

 

 

 

 

 

 

 

 

 

= 2dj + C =

2arctg

x - a

 

+ C.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b - x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(x

- a)(b - x)

 

 

 

 

b - x = (b - a)cos2 t

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

dx = 2(b - a)sin t costdt

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Пример 31. Вычислить интеграл

 

I =

 

 

 

 

 

dx

 

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 +

 

 

 

1 + x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

133

Решение.

 

 

 

dx

 

 

x + 1 = t2

 

2tdt

 

(t + 1) − 1

 

dt

 

 

I =

 

 

 

=

x = t

2 − 1

=

= 2

dt = 2dt − 2

 

=

 

 

 

 

 

 

 

t +

 

 

1

+ 1 + x

 

 

dx =

2tdt

 

1 + t

t + 1

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

= 2t = 2ln t + 1 + c = 2t 2 − 1 − 2ln t2 − 1 + 1 + C

Пример 32. Вычислить интеграл I =

 

x2dx

.

(1

+ x2 )2

 

 

Решение.

 

 

 

 

x = tgt

 

I =

 

x2 dx

=

dx =

dt

 

 

(1

+ x2 )2

cos2 t

 

 

 

 

 

 

 

 

 

1 + x2 = 1 + tg2 x =

1

 

 

 

 

 

 

 

 

 

cos2 x

 

 

 

 

 

 

 

= tg2t cos4 tdt = sin2 tdt = cos2 t

 

=

 

1

(1 − cos 2t)dt =

t

1

sin 2t + C =

1

arctgx

1

sin 2arctgt + C.

 

 

2

4

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

4

 

 

 

Пример 33. Вычислить интеграл

I =

 

a + x

dx .

 

a x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Решение.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x = a cos 2t

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a + x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I =

 

 

dx =

dx = −2a sin 2tdt

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

= −4acos2 t =

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

cos2 t

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a + x

 

 

=

 

a(1 + cos 2t)

=

 

=

cos t

 

 

 

 

 

 

 

 

 

 

a x

 

a(1 − cos 2t)

 

sin2 t

sin t

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

= −2a(1 + cos 2t)dt = −2at − 2acos 2tdt = −2at a sin 2t + C =

 

 

 

 

 

 

 

x

 

 

x 2

 

= −a arccos

 

+

1 −

 

 

 

+ C.

 

 

 

a

 

 

a

 

 

 

 

 

 

 

 

 

 

 

134

Пример 34. Вычислить интегралы:

 

 

 

 

 

 

 

 

34.1. I =

 

 

 

dx

 

 

 

, применяя подстановку

x =

1

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x x2 - 2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

t

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ответ: I =

 

 

2

 

arccos

 

 

 

2

+ C .

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x

 

 

 

 

 

 

 

 

34.2. I =

 

 

dx

 

,

применяя подстановку

x = − ln t .

 

 

 

 

 

 

e x + 1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ответ: I = -ln(1 + ex ) + C .

 

 

 

 

 

 

 

 

34.3. I =

 

xdx

 

 

 

 

 

 

 

 

 

 

 

 

 

t =

 

 

 

 

.

 

, применяя подстановку

 

x +1

 

 

 

 

 

 

 

 

 

x + 1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ответ: I =

 

 

 

 

(x +1)3 - 2

 

+ C .

 

 

 

 

 

 

 

 

 

 

 

 

x + 1

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

34.4. I =

 

 

 

 

dx

 

 

 

 

 

 

, применяя подстановку

x =

1

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x

2

 

4 - x2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

t

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ответ. I = -

 

 

 

4 - x

2

 

+ C .

 

 

 

 

 

 

 

 

 

 

 

 

4x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

34.5. I =

 

 

 

dx

 

 

 

, применяя подстановку

x = sin 2 t .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x(x -1)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ответ. I = 2arcsin

 

 

+ C .

 

 

 

 

 

 

 

 

 

x

 

 

 

 

 

 

 

 

2.4.Метод интегрирования по частям

Кчислу эффективных методов интегрирования относится метод ин- тегрирования по частям. Основывается этот метод на следующей теореме.

Теорема. Если каждая из функций u(x) и

υ(x) дифференцируема

на множестве x и, кроме того, на этом множестве

существует первообраз-

x существует первооб-

ная для функции u(x) ×u (x) . Тогда на множестве

 

разная и для функции u(x) ×u (x) , причем справедлива формула

u(x) × u¢(x)dx = u(x)u(x) - u(x)u¢dx .

(1)

Замечание. Определение дифференциала первого порядка и свойство

инвариантности его формы позволяет записать формулу (1)

в виде

ud u = u × u - udu .

(2)

135

Доказательство. Для функций

u(x) и

υ(x) запишем формулу для

производной произведения двух функций

 

 

(3)

(u(x) × u(x)) = u(x) × u (x) + u (x) × u(x) .

Интегрируя обе части равенства

(3) и, учитывая, что для всех

x X

существует u(x)u¢(x)dx и (u¢(x)u(x))¢dx = u(x) × u(x) + C , то для всех x

из множества X существует и интеграл u(x)(x)dx , причем справедливы

формулы (1) и (2) – формулы интегрирования по частям.

Суть метода интегрирования по частям состоит в следующем: инте- грал, стоящий в правой части равенства (2) табличный, «проще» или сов- падающий с интегралом, стоящим в левой части равенства (2).

Для применения метода интегрирования по частям, в конкретном случае, требуется уметь разбить заданное подынтегральное выражение на два множителя на u и на d υ . Общих правил для этого, к сожалению, нельзя дать, кроме:

а) dx всегда должен быть частью d υ ;

в) надо уметь интегрировать d υ (т.е. находить υ);

с) если подынтегральное выражение есть произведение двух функций, тогда наиболее сложный множитель надо рассматривать как часть d υ .

Практика интегрирования показывает, что значительная часть инте- гралов, берущихся посредством интегрирования по частям, может быть разбита на следующие группы:

1. К первой группе относятся интегралы, подынтегральная функция которых содержит в качестве множителя одну из следующих функций: lnx, arcsinx, arctgx, (arctgx)2, ln ϕ(x) . Для вычисления интегралов первой группы

выбирают в качестве u(x)

одну из указанных выше функций.

2. Ко второй группе относятся интегралы вида

(ax + b)n cos mxdx,

(ax + b)n sin mxdx ,

(ax + b)n ekxdx ,

где a, b, k некоторые постоянные, n целое положительное число.

Интегралы второй группы берутся путем

n-кратного применения

формулы интегрирования по частям, причем в качестве u(x) всякий раз следует брать (ax + b) в соответствующей степени. После каждого интег- рирования по частям эта степень будет понижаться на единицу.

3. К третьей группе относятся интегралы вида

eax sin bxdx , eaxbxdx , sin(ln x)dx .

136

Обозначая любой из интегралов этой группы через I и дважды ин- тегрируя по частям, получим уравнение первого порядка относительно I, решая которое, находим I, а, следовательно, и искомый интеграл.

Замечание. Повторное применение формулы (2) позволяет получить обобщенную формулу интегрирования по частям: если функции u(x) и υ(x) имеют непрерывные производные всех порядков до (n + 1)-го вклю-

′ ′′

 

(n)

, υ

(n)

,u

(n+1)

,

 

(n+1)

, то

 

 

 

 

 

 

 

 

 

 

 

 

чительно u ,

υ ,u ,...,u

 

 

 

 

 

υ

 

 

 

 

 

 

 

 

 

 

 

 

 

uυ

(n+1)

 

 

 

 

(n)

 

(n−1)

 

 

′′

(n−2)

+ ... +

(−1)

n+1

u

(n+1)

υdx .

(4)

 

dx = uυ

 

u υ

 

 

+ u υ

 

 

 

 

 

Полагая в (4)

n = 1, получим

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

′′

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(5)

 

 

 

 

 

 

 

uυ dx = uυ − u υ + u υdx

 

 

 

 

 

 

 

 

 

Пример 35. Вычислить интеграл

I = x cos xdx .

 

 

 

 

 

 

 

 

 

Решение.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I = x cos xdx =

 

u = x;du = dx

 

 

 

 

 

 

= xsin x sin xdx = x sin x + cos x + C .

 

 

 

 

 

 

 

 

 

 

 

d υ = cos x;υ = sin x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Пример 36. Вычислить интеграл

I = x2 ln xdx .

 

 

 

 

 

 

 

 

 

Решение.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

u = ln x; du =

dx

 

 

x3

 

 

x2

 

 

x 3

 

 

 

x3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I = x2 ln xdx =

 

 

 

 

 

 

 

x

 

 

=

ln x

dx =

ln x

+ C.

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

d υ = x2dx;υ =

x

 

 

 

 

3

 

 

3

 

3

 

 

9

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Пример 37. Вычислить интеграл I = arcsin xdx .

Решение.

 

u = arcsin x;du =

 

 

dx

 

 

 

 

xdx

 

 

I = arcsin xdx =

 

 

 

 

 

= x arcsin x

 

 

=

 

 

1 − x2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

d υ = dx; υ = x

 

 

 

 

1 − x2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

d (1 − x2 )

 

 

 

 

 

 

 

 

 

 

 

 

= x arcsin x +

= x arcsin x + 1 − x2 + C.

 

 

2

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(1 − x2 )2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Пример 38. Вычислить интеграл

I = xarctgxdx .

 

 

137

Решение.

 

 

 

 

 

 

 

 

 

 

u = arctgx; du =

 

 

 

 

dx

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

+ x2

 

 

 

 

 

 

x2

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

x2

 

 

 

I = xarctgxdx =

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

=

 

 

arctgx -

 

 

 

 

 

 

dx =

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x2

 

 

 

 

 

 

 

 

 

 

 

 

1

+ x2

 

 

 

 

 

 

 

 

 

 

d u = xdx; u =

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

=

x2

arctgx -

 

1

dx +

 

1

 

 

 

dx

 

=

 

 

x2

 

 

arctgx -

 

 

x

 

+

1

arctgx + C.

2

2

2

1

+ x2

 

 

2

 

 

 

2

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Пример 39. Вычислить интеграл

I =

 

 

 

 

 

x

 

 

dx .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

cos2 x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Решение.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I =

x

 

dx =

xdtgx =

 

u = x; du = dx

 

 

 

 

 

 

 

 

 

= xtgx - tgxdx =

 

 

 

 

 

 

 

 

 

 

 

cos2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

d u = dtgx;u = tgx

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

= xtgx -

sin x

dx = xtgx +

d cos x

 

= xtgx + ln

 

cos x

 

+ C.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

cos x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

cos x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Пример 40. Вычислить интеграл

In = cosn xdx .

 

 

 

 

 

 

 

 

 

 

 

 

 

Решение.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In = cosn xdx = cosn − 2 x(1 - sin2 x)dx = cosn − 2 xdx - cosn − 2 x sin2 xdx =

=

 

u = sin x; du = cos xdx

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

=

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

d u = cosn − 2 x sin xdx;u = -cosn − 2 xd cos x = -

 

 

cosn −1 x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n -1

 

 

 

 

 

 

 

 

 

 

 

 

 

= In − 2 +

sin x cosn −1 x

+

 

1

 

 

 

 

cosn xdx.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n + 1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n -1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Тогда имеем

 

In = In−2 +

 

sin x cosn−1 x

+

 

 

 

I

n

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n -1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n -

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

sin x cosn−1 x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Откуда получим

In 1 -

 

 

 

 

 

= In−2 +

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n -1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n -1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

А, следовательно,

 

 

 

 

 

 

 

 

 

 

 

 

 

sin x cosn−1 x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In = cos

n

xdx =

+

 

n -1

 

 

 

 

 

 

(n ¹ 0)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In−2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n

 

 

 

 

 

 

 

 

 

n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Полученная формула сводит вычисление интеграла

 

 

 

 

In

к вычисле-

нию интеграла In−2

с меньшим на две единицы индексом.

 

 

 

 

138

Пример 41. Вычислить интеграл In

=

 

dx

.

(x2

+ a2 )n

 

 

 

Решение. Этот интеграл не входит ни в одну из упомянутых выше групп. Для вычисления этого интеграла установим для него рекуррентную фор-

мулу, сводящую вопрос о вычислении

 

 

In к вычислению

In−1 . При

n ¹ 1

имеем (n = 1, I1

табличный интеграл)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

a2dx

 

 

 

 

 

 

 

 

1

 

 

 

 

 

((x2 + a2 ) - x2 )

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In

=

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

=

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

dx =

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a2

 

(x2 + a2 )n

a

2

 

 

 

 

 

(x2 + a2 )n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

=

1

 

 

 

dx

 

 

 

 

-

 

 

1

 

 

x

 

 

 

 

xdx

 

 

 

 

 

 

=

 

 

1

 

 

 

× In −1 -

1

 

 

x

d (x2 + a2 )

=

 

 

a

2

(x

2

+ a

2

)

n −1

2a

2

(x

2

 

+ a

2

)

n

 

a

2

 

 

2a

2

(x

2

+ a

2

)

n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

=

 

u = x; du = dx

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

=

1

 

 

 

× In −1

+

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x

 

 

 

 

-

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

d (x2

 

+ a2 )

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

d u =

 

; u =

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a2

 

 

2a2 (n -1)(x2 + a2 )n −1

 

 

(x2 + a2 )n

(n -1)(x2 + a2 )n −1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

-

 

 

 

 

1

 

 

 

× In −1

=

 

 

 

 

 

 

 

 

 

 

 

 

 

x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

+

 

 

1

 

 

2n - 3

 

× In −1.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2a

2

(n -

1)

2a

2

 

(n -

1)(x

2

 

+ a

2

)

n −1

 

a

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2n - 2

 

 

 

 

 

 

 

 

 

 

 

 

Таким образом, имеем

 

In =

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x

 

 

 

 

 

 

 

 

 

+

1

 

×

 

 

2n - 3

In−1 .

 

 

 

 

 

2a

2

(n

-1)(x

2

+ a

2

)

n−1

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a

 

 

2n - 2

 

 

 

 

 

Отметим, что I1

=

 

 

 

 

dx

 

 

 

=

1

arctg

x

+ C .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x2

+ a2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a

 

 

 

 

 

 

 

 

 

 

a

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

После того, как вычислен интеграл I1 , полагая в полученной форму-

ле k = 2, находим I2 . В свою очередь зная I2 и полагая в рекуррентной формуле n =3 находим I3 . Продолжая действовать таким образом дальше,

находим интеграл In для любого натурального n.

Пример 42. Вычислить интеграл

 

 

I = 1 + x2 dx .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

xdx

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

u = 1 + x2 ;du =

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I =

 

1 + x2 dx =

 

 

 

 

 

 

 

 

=

 

 

 

 

Решение.

 

 

1 + x2

 

 

 

 

 

 

 

υ = x; d υ = dx

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x2

 

 

 

 

 

 

 

 

 

 

 

(1 + x2 ) − 1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

= x 1 + x2

 

 

 

 

 

 

 

 

dx =x 1 + x2

 

 

 

 

 

 

 

dx =

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

+ x2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 + x2

 

 

 

 

 

 

 

 

dx

 

 

 

 

 

 

 

= x

1 + x2

1 + x2 dx +

 

 

 

= x 1 + x2

I + ln(x + 1 + x2 ).

 

 

 

 

 

 

 

1 + x2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

139

или

2I = −x1 + x2 − ln(x + 1 + x2 ) + C .

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

2

 

Откуда искомый интеграл

I =

 

x 1 + x

 

− ln(x +

1 + x

 

)

+ C .

2

 

 

 

 

 

 

 

 

 

 

 

 

 

Пример 43. Вычислить интеграл

I = eax cosbxdx .

 

 

 

 

Решение.

u = eax ;du = aeax dx

I = eax cosbxdx = υ = cosbx;υ = 1 sin bx b

= eax sin bx b

a

eax sin bxdx =

u = eax ;du = aeax dx

 

 

 

=

 

 

 

 

 

 

 

 

 

 

cos bx

 

b

 

d υ = sin bxdx;υ = −

 

 

 

 

 

 

 

b

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

=

eax sin bx

+

a

eax cosbx

a2

 

I.

 

 

 

 

 

 

b2

 

 

 

 

b

 

 

b2

 

 

 

 

 

 

 

Таким образом, после двукратного интегрирования I по частям по-

лучили для интеграла I уравнение первого порядка

 

 

I =

eax sin bx

+

a

eax cos bx

a2

 

I .

 

 

 

b2

b2

 

 

 

 

 

b

 

 

 

 

 

 

 

 

 

 

 

Решая его относительно I, получим

I =

a cosbx + bsin bx

eax + C .

 

 

 

 

 

 

 

 

 

 

 

 

 

a2 + b2

Замечание. При вычислении данного интеграла в интегрировании по частям можно дважды было брать тригонометрическую функцию за u.

Замечание. Данный интеграл можно вычислить, используя обобщен- ную формулу интегрирования по частям

′′

′ ′

′′

 

 

 

 

 

uυ dx = uυ − u υ + u

υdx .

 

 

 

 

 

Положим u = cos bx , υ =

1

eax , тогда u′ = −b sin bx , u′′ = −b2 cos bx , υ′ =

eax

,

a2

a

 

 

 

 

 

 

 

 

 

 

υ′′ = eax . Следовательно искомый интеграл I =

eax

cos bx +

b

eax sin bx

b2

I + C ,

 

a2

a2

 

 

 

a

 

 

 

 

 

 

откуда I = a cos bx + b sin bx eax + C . a2 + b2

140