Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
математика все лекции.docx
Скачиваний:
328
Добавлен:
31.03.2015
Размер:
6.85 Mб
Скачать

Лекция 11. Вычисление вычетов и применение теории вычетов для вычисления контурных и несобственных интегралов

Преходим к изложению теории вычетов и их применению к вычислению комплексных интегралов по замкнутому контуру и действительных несобственных интегралов.

1. Вычисление вычетов

Универсальный способ вычисления вычета в изолированной особой точке – это вычисление по определению

Однако он не всегда приводит к цели, так как связан с вычислением интеграла, которое может оказаться весьма не простым. Второй способ основан на разложении функции в ряд Лорана и выделении в нем коэффициента при ТогдаНо и этот способ часто приводит к громоздким вычислениям. Поэтому дадим сравнительно простой способ, основанный на следующем утверждении.

Теорема 1.Пусть изолированная особая точка функцииТогда:

1. если – устранимая особая точка функциито0;

2. если полюс первого порядка функциито он может вычислен двумя способами:

а)

б)

(здесь аналитические в точкефункции, причем);

3. если полюсго порядка функциито

4) если существенно особая точка функциито вычет в ней вычисляют после разложенияв ряд Лорана в окрестности точки; тогдакоэффициент прив этом разложении.

Доказательство. Утверждение 1 очевидно, так как в разложении функциив ряд Лорана в окрестности устранимой особой точке нет главной части, и значит,Утверждение 2а вытекает из утверждения 3. Докажем его.

Запишем разложение функции в ряд Лорана:

Умножая его обе части на получим

Чтобы найти коэффициент продифференцируем последнее равенствораз пои перейдём в полученном равенстве к пределу приПолучим

Формула (1) доказана. Утверждение 2б вытекает из утверждения 2а, если в нем заменить наи перейти к пределу приТеорема доказана.

2. Вычисление интегралов

1. Непосредственное применение теоремы Коши о вычетах. Рассмотрим интегралВычислим вычет в единственной особой точкеподынтегральной функцииТак какявляется полюсом 3-го порядка функциито вычет можно было бы подсчитать по формуле (1). Однако удобнее это сделать, разложивв ряд Лорана в окрестности особой точки:

Следовательно, и по теореме Коши о вычетах получаем, что

2.Интегралы вида (дробно-рациональная функция.Здесь надо сделать заменуТогдаи интеграл преобразуется к видугде

также дробно-рациональная функция. Теперь надо применить теорему Коши о вычетах и получить, что

Пример 1.Вычислить интеграл.

Решение. Имеем

Подынтегральная функция имеет два простых полюса:Внутрь контурапопадает только одна точкапоэтому

3. Вычисление несобственных интегралов. Прежде чем перейти к изложению этой темы, докажем сначала следующее вспомогательное утверждение.

Лемма 1. Пусть правильная дробь (т.е.). Тогда для любой постояннойсуществует числотакое, что при всехимеет место оценка

где полуокружность радиусалежащая в верхней полуплоскости

Доказательство. Имеем

Так как существует конечный предел то для любой фиксированной постояннойнайдётсятакое, что при всехвыполняется неравенство а значит, при Лемма доказана.

Теперь нетрудно обосновать следующее утверждение.

Теорема 2. Пусть для интеграла

выполнены условия:

1)

Тогда

(здесь нули знаменателялежащие в верхней полуплоскости ).

Доказательство. Проведём полуокружность так, чтобы все особые точки (нули знаменателя), лежащие в верхней полуплоскостиоказались внутри неё. По теореме Коши о вычетах имеем

Правая часть этого равенства не зависит от поэтому устремляя в неми учитывая, чтои что (см. лемму 1 и условие 2)

дл.

получаем утверждение теоремы.

При вычислении интегралов видагдеправильная дробь, используется следующее утверждение.

Лемма Жордана. Пусть функция удовлетворяет требованиям:

1. аналитична в полуплоскостиза исключением конечного числа особых точек

2. при

Тогда для любого имеет место равенствогдеполуокружность радиусалежащая в верхней полуплоскости

Применим эту лемму к вычислению интеграла где правильная дробь (т.е.). Делая те же построения, что и при доказательстве теоремы 2, приходим к равенству

Устремляя здесь и учитывая, что согласно лемме Жорданаполучаем формулу

Рассмотрим примеры.

Пример 2. Вычислить интеграл

Решение. Так как подынтегральная функция чётная, то, используя формулу (2), можно записать, что

Функция имеет лишь одну особую точкув верхней полуплоскостии это есть полюс 2-го порядка. Вычет в этой точке вычисляем по формуле (1):

Следовательно,

Пример 3. Вычислить интеграл

Решение. Так как подынтегральная функция чётная, то можно записать, что

Вычислим теперь интеграл, стоящей справа, используя формулу (3). Так как в верхней полуплоскости функция имеет только одну особую точкупростой полюс, то

Следовательно,