
- •Пищевая инженерия производства жировой продукции
- •Введение
- •1. Пищевая ценность и качество пищевых продуктов
- •1.1. Пищевая ценность
- •Коэффициенты энергетической ценности
- •Энергетическая ценность нутриентов
- •Калорийность некоторых пищевых продуктов
- •1.2. Качество пищевых продуктов
- •2. Основы питания
- •2.1. Физиологическая потребность человека в пище
- •2.2. Основы сбалансированного питания
- •Формула сбалансированного питания
- •2.3. Основы адекватного питания
- •2.4. Основы рационального питания
- •2.4.1. Баланс энергии
- •Нормы энергозатрат для групп работающих в различных условиях
- •2.4.2. Потребность организма в пищевых веществах
- •Нормы физиологической потребности населения в основных пищевых веществах
- •Нормы физиологических потребностей в некоторых пищевых и биологически активных веществах для человека (1859 лет)
- •2.4.3. Режим приема пищи
- •Рекомендуемые размеры потребления пищевых продуктов в среднем на душу населения России
- •3. Белковые вещества
- •3.1. Строение и свойства белков
- •3.1.1. Основные свойства белков
- •3.1.2. Аминокислоты
- •Строение и некоторые свойства аминокислот
- •3.2. Классификация белков
- •3.2.1. Простые белки (протеины)
- •3.2.2. Сложные белки (протеиды)
- •3.3. Пищевая ценность белков
- •3.3.1. Нормы потребления белков
- •Массовая доля белков в некоторых пищевых продуктах, %
- •3.3.2. Биологическая ценность белков
- •Амикислотная шкала для расчета аминокислотного скора фао/воз
- •3.3.3. Характеристика белков сырья пищевых продуктов
- •3.4. Ферменты
- •3.4.1. Классификация ферментов
- •3.4.2. Номенклатура выпускаемых ферментных препаратов
- •3.4.3. Основные способы производства ферментных препаратов
- •4. Углеводы
- •4.1. Моносахариды
- •4.2. Сахароподобные полисахариды (олигосахариды)
- •4.3. Полисахариды, не обладающие свойствами сахаров
- •4.4. Превращения углеводов при производстве пищевых продуктов.
- •4.4.1. Гидролиз ди- и полисахаридов
- •4.5. Значение углеводов в питании
- •5. Липиды
- •5.1. Жирные кислоты
- •5.1.1. Насыщенные жирные кислоты
- •Основные характеристики и свойства некоторых насущенных жирных кислот
- •5.1.2. Ненасыщенные жирные кислоты
- •5.1.2.1. Жирные кислоты олеинового ряда
- •Основные характеристики и свойства некоторых жирных кислот олеинового ряда
- •5.1.2.2. Полиолефиновые кислоты
- •5.1.2.3. Ацетиленовые (алкиновые) кислоты
- •5.1.2.4. Жирные кислоты с дополнительными кислородсодержащими функциональными группами
- •5.1.3. Структура молекул жирных кислот
- •5.1.4. Физические свойства жирных кислот
- •5.2. Вещества, сопутствующие жирам
- •5.2.1. Свободные жирные кислоты
- •5.2.2. Фосфолипиды
- •5.2.2.1. Эфирные фосфатиды
- •5.2.2.2. Жирные кислоты фосфатидов
- •5.2.3. Общие свойства фосфатидов
- •5.2.4. Стеролы и стериды
- •5.2.5. Воски
- •5.3. Пищевая ценность жиров
- •5.4. Биологическая ценность жиров
- •5.5. Биохимические и физико-химические изменения жиров
- •5.6. Окислительная порча жиров
- •6. Витамины
- •6.1. Водорастворимые витамины и витаминоподобные вещества
- •6.2. Жирорастворимые витамины и витаминоподобные вещества
- •Биологическая активность изомеров токоферолов
- •Содержание различных изомеров токоферолов в % от их общего количества
- •6.3. Антивитамины
- •7. Фенольные соединения
- •8. Нуклеиновые кислоты
- •8.1. Пурины и пиримидины
- •8.2. Состав и свойства нуклеиновых кислот
- •9. Минеральные вещества
- •9.1. Макроэлементы
- •9.2. Микроэлементы
- •9.3. Токсичные минеральные вещества
- •9.4. Вода в пищевых продуктах
- •9.4.1. Строение молекулы воды
- •9.4.2. Структура и свойства льда
- •9.4.3. Свободная и связанная влага в пищевых продуктах
- •9.4.4. Взаимодействие «вода – растворенное вещество»
- •9.4.5. Жесткость воды
- •9.4.6. Активность воды
- •10. Метаболизм пищевых веществ
- •10.1. Основы пищеварения
- •10.2. Биологическое окисление
- •10.3. Метаболизм основных продуктов распада макронутриентов
- •10.3.1. Метаболизм сахаров
- •10.3.2. Метаболизм жирных кислот
- •10.3.3. Метаболизм аминокислот
- •10.4. Взаимопревращения жиров, аминокислот и углеводов
- •10.5. Биосинтез в процессах метаболизма
- •10.5.1. Синтез гликогена
- •10.5.2. Синтез жирных кислот
- •10.5.3. Превращение жирных кислот в жиры
- •10.5.4. Синтез белков
- •11. Пищевые добавки
- •Функциональные классы пищевых добавок
- •11.1. Пищевые красители
- •Основные натуральные и синтетические пищевые красители
- •11.2. Вещества, изменяющие консистенцию
- •11.2.1. Загустители и студнеобразователи
- •11.2.2. Эмульгаторы и стабилизаторы
- •11.3. Ароматические вещества
- •Ароматические вещества некоторых пищевых продуктов
- •Ароматические вещества
- •11.4. Подсластители
- •Свойства основных подсластителей
- •Максмально применяемая массовая доля подсластителей в продуктах. Мг/кг
- •11.5. Химические консерванты
- •Ориентировочные дозы внесения взаимозаменяемых консервантов в пищевые продукты, г/100 кг продукта
- •11.6. Антиоксиданты и их синергисты
- •11.7. Ферментные препараты
- •12. Природные токсиканты и загрязнители
- •12.1. Природные токсиканты
- •12.2. Загрязнители
- •12.2.1. Пестициды
- •12.2.2. Токсичные элементы
- •12.2.3. Радиоактивные загрязнения
- •12.2.4. Микотоксины
- •12.2.5. Канцерогенные вещества
- •Контрольные вопросы
- •Список рекомендуемой литературы
- •Б.А. Рогов пищевая инженерия производства жировой продукции Справочное пособие
3.1. Строение и свойства белков
Чтобы обеспечить рациональную переработку белоксодержащего сырья и выработку качественных пищевых продуктов необходимо знать свойства белков.
Молекулы природных белков состоят из большого числа аминокислотных остатков, связанных между собой в полипептидную цепь. Молекулярная масса белковых веществ колеблется в очень широких пределах: от 6000 до 500000. Встречаются белки с молекулярной массой, достигающими нескольких миллионов. Число аминокислотных остатков, входящих в молекулу белка, колеблется в соответствии с этим от 60 до 5000.
Структура белков очень сложна и до конца еще не выяснена. Исследованиями с применением современных методов анализа установлено наличие двух основных типов структуры: свернутых молекул-глобул и фибриллярных пучков или пачек вытянутых цепей.
Молекулы белков и нуклеиновых кислот имеют спиральную конфигурацию.
Последовательность аминокислотных остатков различна для каждого белка, что создает на поверхности спирали из белковых цепей аминокислот специальный рельеф, определяющий структуру центров ферментативной, антигенной, гормональной активности белка. Взаимодействие белковых цепей вызывает также специфические для каждого белка отклонения от основного хода спирали. В фибриллярных белках спирали вытянуты и водородные связи соединяют цепи по перпендикулярным к их осям направлениям.
3.1.1. Основные свойства белков
К основным свойствам белков пищевых продуктов относятся: гидратация, денатурация и деструкция.
Гидратация белков. Способность нативных белков сорбировать полярные молекулы воды за счет свободных и связанных полярных групп белковых молекул называется гидратацией.
Гидратация связана с двумя видами адсорбции: ионной и молекулярной. Адсорбирование воды ионизированными свободными полярными группами (аминогруппы диаминокислот, карбоксильные группы дикарбоновых кислот) белка называется ионной адсорбцией.
Адсорбирование воды связанными полярными группами (пептидные группы главных полипептидных цепей, гидроксильные и сульфгидрильные группы) называется молекулярной адсорбцией.
Величина молекулярной адсорбции воды постоянна для каждого вида белка, величина ионной адсорбции изменяется в зависимости от реакции среды.
В изоэлектрической точке, когда степень диссоциации молекул белка минимальна и заряд белковой молекулы близок к нулю, способность белка связывать воду наименьшая. При сдвиге рН среды в кислую или щелочную сторону от изоэлектрической точки усиливается диссоциация основных или кислотных групп белка, увеличивается заряд белковых молекул и усиливается гидратация белка.
В технологических процессах эти свойства белков используют для увеличения их водосвязывающей способности.
Адсорбированная вода удерживается белками вследствие образования между их молекулами и водой водородных связей. Водородные связи относятся к слабым, однако это компенсируется значительным количеством связей. Так, каждая молекула воды способна образовывать четыре водородные связи, которые распределяются между полярными группами белка и молекулами воды. В результате адсорбированная вода в белке оказывается довольно прочно связанной. Она не отделяется от белка самопроизвольно и не может служить растворителем для других веществ.
В растворах небольшой концентрации молекулы белка полностью гидратированы, так как содержится избыточное количество воды. В концентрированных растворах белков при добавлении воды происходит их дополнительная гидратация.
Гидратация белков имеет большое практическое значение при производстве студней и различных полуфабрикатов, например, рубленых котлет, бифштексов, фарша для пельменей, теста, омлетов и т. п. При добавлении к измельченным животным или растительным продуктам воды, раствора поваренной соли и других веществ в процессе перемешивания компонентов гидратация белков сопровождается протекающими одновременно процессами растворения и набухания. Гидратация повышает липкость пищевой массы, в результате чего она хорошо формуется в готовые изделия.
От степени гидратации белков в значительной мере зависит такой важный показатель качества готовых продуктов, как сочность. При оценке роли гидратационных процессов необходимо иметь в виду, что в пищевых продуктах наряду с адсорбционной водой, прочно связанной белками, содержится осмотически- и капиллярно-связанная вода, которая также влияет на качество продукции.
Набухание белков обусловлено их способностью поглощать воду и при определенных условиях образовывать растворы, называемые студнями. Набухающий в воде белок пшеничной муки образует клейковину.
Некоторые белки набухают ограниченно, другие – неограниченно с образованием коллоидных растворов. Способность белков к набуханию определяют гигроскопические свойства белоксодержащего сырья. При соответствующих сочетаниях температуры и влажности некоторые белки приобретают способность к пластическому истечению, образуя после охлаждения твердые тела, сохраняющую приданную им форму в виде стекловидного вещества.
Денатурация белков это нарушение нативной пространственной структуры белковой молекулы под влиянием различных внешних воздействий, сопровождающееся изменением их физико-химических и биологических свойств. При этом нарушаются вторичная и третичная структуры белковой молекулы, а первичная, как правило, сохраняется.
Денатурация белков происходит при нагревании и замораживании пищевых продуктов, под действием различных излучений, кислот, щелочей, резких механических воздействий и других факторов.
При денатурации белков происходят следующие основные изменения:
резко снижается растворимость белков;
теряется биологическая активность, способность к гидратации и видовая специфичность;
улучшается атакуемость протеолитическими ферментами;
повышается реакционная способность белков;
происходит агрегирование белковых молекул;
заряд белковой молекулы становится равным нулю.
Потеря белками биологической активности в результате тепловой денатурации приводит к инактивации ферментов и отмиранию микроорганизмов.
В результате потери белками видовой специфичности пищевая ценность продукта не снижается.
Рассмотрим наиболее распространенную тепловую денатурацию белковых молекул, сопровождаемую разрушением слабых поперечных связей между полипептидными цепями и ослаблением гидрофобных и других взаимодействий между белковыми цепями. В результате этого процесса изменяется конформация полипептидных цепей в белковой молекуле. Например, фибриллярные белки изменяют свою эластичность, у глобулярных белков развертываются белковые глобулы с последующим свертыванием по новому типу. Прочные (ковалентные) связи белковой молекулы при этом не нарушаются. Глобулярные белки изменяют растворимость, вязкость, осмотические свойства и электрофоретическую подвижность.
Каждый белок имеет определенную температуру денатурации t. Для белков рыбы t = 30 °С, яичного белка t = 50...55 °С, мяса t = 55...60 °С и т. п.
При значениях рН среды, близких к изоэлектрической точке белка, денатурация происходит при более низкой температуре и сопровождается максимальной дегидратацией белка. Смещение рН среды способствует повышению термостабильности белков.
Направленное изменение рН среды широко используется в технологии для улучшения качества блюд. Так, при тушении мяса, рыбы, мариновании, перед жаркой добавляют кислоту, вино или другие кислые приправы для создания кислой среды со значениями рН ниже изоэлектрической точки белков продукта. В этих условиях дегидратация белков в продуктах уменьшается и готовое блюдо получается более сочным.
Температура денатурации белков повышается в присутствии других, более термостабильных белков и некоторых веществ небелковой природы, например, сахарозы.
Денатурация некоторых белков (например, казеина молока) может происходить без видимых изменений белкового раствора. Пищевые продукты, доведенные тепловой обработкой до готовности, могут содержать некоторое количество нативных, неденатурированных белков, в том числе некоторых ферментов.
Денатурированные белки способны к взаимодействию между собой. При агрегировании за счет межмолекулярных связей между денатурированными молекулами белка образуются как прочные, например, дисульфидные связи, так и слабые, например, водородные.
При агрегировании образуются более крупные частицы. Например, при кипячении молока выпадают в осадок хлопья денатурированного лактоальбумина, образуются хлопья и пена белков на поверхности мясных и рыбных бульонов.
При денатурации белков в более концентрированных белковых растворах в результате их агрегирования образуется студень, удерживающий всю содержащуюся в системе воду.
Основные денатурационные изменения мышечных белков завершаются при достижении 65 °С, когда денатурирует более 90 % общего количества белков. При t = 70 °С начинается денатурация миоглобина и гемоглобина, сопровождающаяся ослаблением связи между глобином и гемоглобином, который затем отщепляется и, окисляясь, меняет окраску, вследствие чего цвет мяса становится буровато-серым.
При нагревании мяса существенные денатурационные изменения происходят с белками соединительной ткани. Нагревание коллагена во влажной среде до t = 58...62 °С вызывает его "сваривание", при котором ослабевает и разрывается часть водородных связей, удерживающих полипептидные цепи в трехмерной структуре. Полипептидные цепи при этом изгибаются и скручиваются, между ними возникают новые водородные связи, имеющие случайный характер. В итоге коллагеновые волокна укорачиваются и утолщаются.
Коллаген, подвергнутый тепловой денатурации, становится более эластичным и влагоемким, его прочность значительно уменьшается. Реакционная способность коллагена также возрастает, и он становится более доступным действию пепсина и трипсина, что повышает его перевариваемость. Все эти изменения тем больше, чем выше температура и длительнее нагрев.
Пенообразование – это способность образовывать эмульсии в системе жидкость – газ, называемые пенами. Белки как пенообразователи широко используются при производстве кондитерских изделий.
Гидролиз белков – это расщепление на составные части в присутствии кислот или ферментов до образования полипептидов, трипептидов, дипептидов и свободных аминокислот. Для получения аминокислот чаще всего используют ферментативное расщепление белков с помощью ферментов животного организма: пепсина, трипсина, и химотрипсина. Пепсин (фермент желудочного сока) действует в слабокислой среде и расщепляет белки в основном до пептидов. Трипсин (фермент поджелудочной железы) действует в слабощелочной среде и также гидролизует природные белки до пептидов. Эрепсин (фермент слизистой оболочки тонких кишок) гидролизует пептиды до аминокислот. Некоторые растения содержат также протеолитические ферменты.
Первичные продукты гидролитического распада белка называют альбумозами, они не коагулируют, но могут высаливаться подобно белкам. Затем образуются пептоны, которые, которые уже не коагулируют и не высаливаются. Альбумозы и пептоны являются полипептидами.
Деструкция белков. При нагревании пищевых продуктов до 100 °С происходит разрушение макромолекул денатурированных белков. На первом этапе изменений от белковых молекул могут отщепляться такие летучие продукты, как аммиак, сероводород, диоксид углерода и другие соединения. Накапливаясь в продукте и окружающей среде, эти вещества участвуют в образовании вкуса и аромата готовой пищи.
При дальнейшем воздействии температуры происходит деполимеризация белковой молекулы с образованием водорастворимых азотистых веществ. Например, при продолжении нагрева сваренного коллагена происходит его дезагрегация, связанная с разрывом водородных связей и приводящая к образованию полидисперсного продукта глютина.
Этот процесс называется пептизацией. Глютин при 40 °С и выше неограниченно растворяется в воде, а при охлаждении его растворы образуют студни. Глютин легко расщепляется протеазами и, следовательно, легко переваривается.
При нагревании одновременно с пептизацией происходит гидролиз глютина с образованием конечных продуктов, называемых желатозами.
Продукт гидротермической дезагрегации коллагена, способный образовывать прочные, не плавящиеся при t = 23...27 °С студни, называется желатином.
При температуре выше 100 °С наблюдается дальнейший гидролиз мышечных белков до полипептидов, которые, в свою очередь, гидролизуются до аминокислот и других низкомолекулярных азотистых соединений. Степень гидролиза белков тем выше, чем выше температура и длительнее нагрев. Однако с повышением температуры и увеличением длительности нагрева скорость распада полипептидов возрастает более интенсивно, чем скорость распада белков до полипептидов. Чрезмерный распад коллагена при длительном нагревании свыше 100 °С приводит к “разволакиванию” тканей, а глубокий гидролиз глютина к образованию низкомолекулярных соединений, что уменьшает способность бульона к студнеобразованию. Длительный нагрев при температуре более 100 °С вызывает также некоторое ухудшение перевариваемости белков мяса.
Очень продолжительное нагревание при высоких температурах (180300 °С) обусловливает деструкцию аминокислот и образование полиаминокислотных комплексов. Нагрев вызывает существенные изменения экстрактивных веществ. При варке мяса глютамин превращается в глютаминовую кислоту, а инозиновая кислота распадается с образованием гипоксантина. Эти процессы играют решающую роль в формировании вкуса и аромата вареного мяса. Большое значение в формировании аромата, вкуса и цвета продуктов имеет реакция взаимодействия между аминогруппами аминокислот, аминов, полипептидов или белков и гликозидными гидроксильными группами сахаров (реакция Майяра).
Деструкция белков наблюдается при производстве некоторых видов теста. При этом разрушение внутримолекулярных связей в белках происходит при участии протеолитических ферментов, содержащихся в муке и вырабатываемых дрожжевыми клетками.