Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Cорокин О.В. ОТМ.doc
Скачиваний:
24
Добавлен:
19.11.2019
Размер:
28.97 Mб
Скачать

2.2. Общий подход

Многие физические явления удобно рассмат­ривать при помощи схемы, изображенной на рисунке 13:

Рис. 13

Через X здесь обозначено некоторое воздействие (управление), подаваемое на вход системы А (машина, испытуемый образец материала и т. п.), а через Y – реакция (отклик) системы на это воздействие. Будем считать, что реакции Y снимаются с вы­хода системы А.

Под управляемой системой А условимся понимать любой объект, способный детерминированно реагировать на некоторое воздействие. Это значит, что все копии системы А при одинаковых условиях, т.е. при одинаковых воздействиях x(t), ведут себя строго оди­наково, т.е. выдают одинаковые y(t). Такой подход, конечно, явля­ется лишь некоторым приближением, так как практически невозможно получить ни две совершенно одинаковые системы, ни два одинаковых воздействия. Поэтому, строго говоря, следовало бы рассматривать не детерминированные, а вероятностные системы. Тем не менее, для ряда явлений удобно игнорировать этот очевидный факт и систему считать детерминированной, понимая все количественные соотношения между рассматриваемыми величинами в смысле соотношений между их математическими ожиданиями.

Поведение всякой детерминированной управляемой системы может быть определено некоторым соотношением, связывающим выход с входом, т.е. х с у. Это соотношение будем называть уравнением состояния системы. Символически это записывается так

,

где буква А, использованная ранее для обозначения системы может быть истолкована как некоторый оператор, позволяющий определить у(t), если задается х(t).

Введенное понятие о детерминированной системе с входом и выходом является весьма общим. Вот некоторые примеры таких сис­тем: идеальный газ, характеристики которого связаны уравнением Менделеева-Клапейрона, электрическая схема, подчиняющаяся тому или иному дифференциальному уравнению, лопатка паровой или газовой турбины, деформирующаяся во времени, действующими на нее силами и т. д. Нашей целью не является изучение произвольной управляемой системы, и поэтому в процессе изложения мы будем вводить необходимые дополнительные предположения, которые, ограничивая общность, позволят рассмотреть систему частного ви­да, наиболее подходящую для моделирования поведения деформируемого под нагрузкой тела.

Анализ всякой управляемой системы может быть в принципе осуществлен двумя способами. Первый из них микроскопический, основан на детальном изучении устройства системы и функционирова­ния всех образующих ее элементов. Если все это удается выполнить, то появляется возможность написать уравнение состояния всей системы, так как известно поведение каждого ее элемента и способы их взаимодействия. Так, например, кинетическая теория газов позволяет написать уравнение Менделеева-Клапейрона; знание устройства электрической цепи и всех ее характеристик дает возможность написать ее уравнения на основе законов электротех­ники (закона Ома, Кирхгофа и т. п.). Таким образом, микроскопи­ческий подход к анализу управляемой системы основан на рас­смотрении элементарных процессов, из которых складывается дан­ное явление, и в принципе способен дать прямое исчерпывающее описание рассматриваемой системы.

Однако микроподход не всегда может быть осуществлен ввиду сложного или еще не исследованного строения системы. Например, в настоящее время не представляется возможным написать урав­нение состояния деформируемого тела, как бы тщательно оно не было изучено. То же относится и к более сложным явлениям, протекающим в живом организме. В подобных случаях применяется так называемый макроскопический феноменологический (функциональный) подход, при котором не интересуются детальным устройством системы (например, микроскопическим строением деформиру­емого тела) и ее элементов, а изучают функционирование системы в целом, которое рассматривается как связь между входом и выходом. Вообще говоря, эта связь может быть произвольной. Одна­ко для каждого конкретного класса систем на эту связь наклады­ваются ограничения общего характера, а проведение некоторого минимума экспериментов может оказаться достаточным, чтобы выяснить эту связь с необходимыми подробностями.

Использование макроскопического подхода является, как уже отмечалось, во многих случаях вынужденным. Тем не менее, даже создание последовательной микротеории явления не может полностью обесценить соответствующую макротеорию, так как последняя основана на эксперименте и потому более надежна. Микротеория же при построении модели системы всегда вынуждена идти на некоторые упрощающие предположения, приводящие к различного рода неточностям. Например, все «микроскопические» уравнения состоя­ния идеального газа (уравнения Менделеева-Клапейрона, Ван-дер-Ваальса и др.) имеют неустранимые расхождения с эксперимен­тальными данными о реальных газах. Соответствующие же «макро­скопические» уравнения, основанные на этих экспериментальных данных, могут описать поведение реального газа как угодно точ­но. Более того, микроподход является таковым лишь на опреде­ленном уровне – уровне рассматриваемой системы. На уровне же элементарных частей системы он все же является макроподходом, так что микроанализ системы может рассматриваться как синтез ее составных частей, проанализированных макроскопически.

Поскольку в настоящее время микроподход еще не в силах привести к уравнению состояния деформируемого тела, естест­венно решать эту задачу макроскопически. Такой точки зрения и будем придерживаться в дальнейшем.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]