
- •Медведева н.С., Моисеева ю.А., Степанов а.Г., Усикова и.В. Системы поддержки принятия решения Оптимальные методы и теория принятия решений
- •Содержание
- •2.5. Однокритериальная статическая задача в условиях неопределенности 60
- •2.6. Многокритериальные задачи 79
- •2.7. Динамические задачи разработки управленческого решения 86
- •2.8. Рациональные решения 101
- •2.9. Экспертные методы 107
- •Введение
- •1.Оптимальные методы
- •1.1.Методы поиска экстремумов функций
- •1.2.Учет ограничений на значения переменных
- •1.3.Использование Excel для поиска экстремумов функций
- •Лабораторная работа №1. Методы поиска экстремумов с помощью надстройки Поиск решения пакета Excel Задание
- •Порядок выполнения работы
- •Контрольные вопросы
- •Отчет о работе
- •2.Теория принятия решений
- •2.1.Основные понятия теории принятия решений
- •2.2.Математическая классификация задач разработки управленческого решения
- •2.3.Однокритериальная статическая задача разработки управленческого решения в условиях определенности
- •Лабораторная работа №2. Решение однокритериальной статической задачи в условиях определенности Задание
- •Порядок выполнения работы
- •Контрольные вопросы
- •Отчет о работе
- •2.4.Однокритериальная статическая задача разработки управленческого решения в условиях риска
- •Метод сведения задачи в условиях риска к детерминированной
- •Лабораторная работа №3. Решение однокритериальной статической задачи в условиях риска методом сведения стохастической задачи к детерминированной Задание
- •Порядок выполнения работы
- •Контрольные вопросы
- •Отчет о работе
- •Методы оптимизации в среднем
- •Алгоритмический метод решения задачи в условиях риска
- •Лабораторная работа №4. Решение однокритериальной статической задачи в условиях риска алгоритмическим методом Задание
- •Порядок выполнения работы
- •Контрольные вопросы
- •Отчет о работе
- •Метод Монте-Карло при решении задачи в условиях риска
- •Лабораторная работа №5. Решение однокритериальной статической задачи в условиях риска методом Монте-Карло Задание
- •Порядок выполнения работы
- •Контрольные вопросы
- •Отчет о работе
- •Задачи в условиях риска с несколькими стохастическими параметрами
- •2.5.Однокритериальная статическая задача в условиях неопределенности
- •Игры с противником.
- •Лабораторная работа №6. Решение однокритериальной статической задачи в условиях неопределенности при играх с противником Задание
- •Порядок выполнения работы
- •Контрольные вопросы
- •Отчет о работе
- •Игры с природой.
- •Лабораторная работа №7. Решение однокритериальной статической задачи в условиях неопределенности при играх с природой Задание
- •Порядок выполнения работы
- •Контрольные вопросы
- •Отчет о работе
- •Игры с природой с экспериментами.
- •Лабораторная работа №8. Решение однокритериальной статической задачи в условиях неопределенности при играх с природой с экспериментами Задание
- •Порядок выполнения работы
- •Контрольные вопросы
- •Отчет о работе
- •2.6.Многокритериальные задачи
- •Лабораторная работа №9. Решение многокритериальной задачи Задание
- •Порядок выполнения работы
- •Контрольные вопросы
- •Отчет о работе
- •2.7.Динамические задачи разработки управленческого решения Общая постановка динамической задачи разработки управленческого решения
- •Метод сетевого планирования
- •Методы теории массового обслуживания
- •Метод динамического программирования
- •Задача управления запасами
- •Методы вариационного исчисления и теории оптимального управления
- •Метод сведения дискретной динамической задачи к статической
- •Лабораторная работа №10. Решение дискретной задачи разработки управленческого решения методом сведения динамической задачи к статической Задание
- •Порядок выполнения работы
- •Контрольные вопросы
- •Отчет о работе
- •2.8.Рациональные решения Общий алгоритм разработки управленческого решения
- •Нереализуемые оптимальные решения
- •Разработка альтернатив для принятия рациональных решений
- •2.9.Экспертные методы Определение круга экспертов
- •Задачи, решаемые при проведении экспертизы
- •Разработка анкеты
- •Разработка методов обработки результатов
- •Проведение анкетирования, обработка и выдача результатов и принятие решения
- •Литература
- •Приложение а. Пример титульного листа отчета о выполнении лабораторной работы3.
- •Приложение б. Содержание отчетов о выполнении лабораторных работ Пример содержания отчета по лабораторной работе №2 «Решение однокритериальной статической задачи в условиях определенности»
- •Пример содержания отчета по лабораторной работе №3 «Решение однокритериальной статической задачи в условиях риска методом сведения стохастической задачи к детерминированной»
- •Пример содержания отчета по лабораторной работе №4 «Решение однокритериальной статической задачи в условиях риска алгоритмическим методом»
- •Пример содержания отчета по лабораторной работе №5 «Решение однокритериальной статической задачи в условиях риска методом Монте-Карло»
- •Пример содержания отчета по лабораторной работе №6 «Решение однокритериальной статической задачи в условиях неопределенности при играх с противником»
- •Пример содержания отчета по лабораторной работе №7 «Решение однокритериальной статической задачи в условиях неопределенности при играх с природой»
- •Пример содержания отчета по лабораторной работе №8 «Решение однокритериальной статической задачи в условиях неопределенности при играх с природой с экспериментами»
- •Пример содержания отчета по лабораторной работе №9 «Решение многокритериальной задачи»
- •Пример содержания отчета по лабораторной работе №10 «Решение дискретной задачи разработки управленческого решения методом сведения динамической задачи к статической»
- •Предметный указатель
Методы вариационного исчисления и теории оптимального управления
Вариационное исчисление – математическая дисциплина, посвященная отысканию экстремальных (наибольших или наименьших) значений функционалов [1]. В свою очередь под функционалом понимается числовая (действительная или комплексная) функция, определенная на некотором множестве функций. Вариационное исчисление является естественным развитием той главы математического анализа, которая посвящена задаче отыскания экстремумов функций. В основе постановки задач классического вариационного исчисления лежат задачи управления физическими процессами. Во всех вариантах таких задач речь идет о способе задания наилучшего в том или другом смысле управления, обеспечивающего минимизацию или максимизацию некой цели управления.
В
одной из возможных постановок [6] предметом
вариационного исчисления является
отыскание неизвестных функций
или
,
реализующих максимум или минимум
определенных интегралов вида
или
где
‑ функция, описывающая взаимосвязь
поведения объекта в зависимости от
управления. На функцию
накладывается ряд требований, в частности,
требования непрерывности производных
на интервале определения, что всегда
обеспечивается в задачах с физическими
процессами и не всегда в задачах экономики
и менеджмента. В большинстве приложений
функции
или
выбираются не среди множества всех
возможных функций от
,
а среди множества функций определенного
класса. Такое допущение оправдано в
связи с тем, что возможности управления
процессом очень часто ограничивают
класс возможных функций неким заранее
заданным.
Развитие идей вариационного исчисления привело к определенной модернизации постановки исходной задачи в виде учета ограничений функции и созданию теории оптимального управления. Методы решения подобных задач опираются на реализацию так называемого принципа максимума Понтрягина [1]. Практическая реализация методов вариационного исчисления и теории оптимального управления позволяет решать динамические задачи разработки управленческого решения.
Метод сведения дискретной динамической задачи к статической
Одним
из возможных методов разработки
управленческого решения для динамических
задач является метод, основанный на
представлении динамической задачи в
виде набора самостоятельно существующих
статических задач. Пусть рассматривается
дискретных моментов времени. Для каждого
из них можно сформулировать самостоятельную
задачу разработки управленческого
решения (например, однокритериальную
статическую в условиях определенности)
1
где
- текущий дискретный момент времени,
.
Рассмотрим
совместную однокритериальную статическую
задачу в условиях определенности,
решение которой
представляет собой набор из
самостоятельных решений
для текущего момента времени
.
Будем считать, что критериальная функция
новой совместной задачи определяется
как сумма критериальных функций для
каждого момента времени, а ограничения
для каждого момента времени добавляются
к общему списку ограничений задачи.
Тогда условие новой задачи можно записать
как
а общее количество уравнений ограничений увеличилось в раз. Таким образом, решение динамической задачи сводится к решению статической задачи разработки управленческого решения и может осуществляться рассмотренными ранее методами.
Реализация
метода в общем случае приводит к
существенному росту трудоемкости
вычислений. Отметим, что если количество
переменных при использовании метода
всегда возрастает в
раз, то число уравнений ограничений
может быть значительно сокращено за
счет конкретного рассмотрения динамических
параметров. Так, если к категории
динамических относятся один или несколько
параметров
,
то рассмотрение каждого из них во времени
увеличивает количество ограничений в
раз. Для статических
нет необходимости увеличивать количество
уравнений, поскольку в этом случае они
имеют смысл величины имеющегося ресурса
на весь интервал планирования. Наконец,
зависимость от времени неконтролируемых
факторов
и
вообще может быть легко учтена при
записи выражения целевой функции или
ограничений особенно в численной форме.
Практическая реализация метода сведения динамических задач к статическим может быть осуществлена с использованием современных программных средств, реализующих, например, метод линейного программирования. При выборе используемой программы следует обращать внимание на ограничения программы по максимальному числу переменных и ограничений. Таким образом, метод сведения динамических задач к статическим может быть использован для решения динамических задач разработки управленческого решения.