Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Molekulyarnaya_fizika_i_termodinamika.doc
Скачиваний:
39
Добавлен:
26.09.2019
Размер:
3.1 Mб
Скачать

§7. Теплопроводность газов

Пусть в некотором объеме газа температура Т убывает в направлении оси Х, т.е. (рис.11). Поскольку кинетическая энергия молекулы определяется как , . Поэтому в сторону убывания температуры будет происходить преимущественный перенос энергии, следовательно, и теплоты. В случае данной задачи переносимый молекулами физической характеристикой является

кинетическая энергия, т.е. . Будем считать, что одинакова во всем объеме. Тогда величины, входящие в уравнение переноса, выразятся следующим образом:

,

где ,

.

- количество внутренней энергии, переносимое за время через площадку перпендикулярно направлению переноса. Подставляя эти выражения в уравнение переноса (4.3), получим:

. (4.11)

Умножив числитель и знаменатель уравнения (4.11) на , где -масса молекулы, -число Авогадро и учитывая, что , перепишем (4.11) в виде:

, (4.12)

где -молярная теплоемкость при постоянном объеме, -молярная масса. Так как -удельная теплоемкость, из (4.11) окончательно получим уравнение теплопроводности:

. (4.13)

Эмпирически явление теплопроводности описывалось уравнением Фурье

, (4.14)

где называется коэффициентом теплопроводности. Из (4.13) и (4.14) следует, что выражение для коэффициента теплопроводности имеет вид:

. (4.15)

Рассмотрим зависимость коэффициента теплопроводности от давления и температуры. Из входящих в (4.15) величин, только плотность и длина свободного пробега зависят от давления, причем и  . Это приводит к заключению, что коэффициент теплопроводности не зависит от давления. Этот вывод находится в превосходном согласии с опытными данными, которые показывают, что при изменении давления в широких пределах коэффициент теплопроводности остается постоянной.

Из величин, входящих в коэффициент теплопроводности (4.15), только одна величина зависит от температуры, причем , соответственно .

Как показывает опыт, коэффициент теплопроводности растет с температурой несколько быстрее, чем . Это связано с тем, что коэффициент теплопроводности зависит от длины свободного пробега. Как показали раньше, не является постоянной величиной, а растет с температурой.

§8. Вязкость газов (внутреннее трение)

Пусть газ течет слоями перпендикулярно оси Х, причем скорость течения слоев убывает по оси Х (рис.12). Перпендикулярно оси Х расположим площадку , по этой площадке соприкасаются два соседних слоя со скоростями течения и .В слоях на хаотичное движение молекул накладывается направленное движение,

причем импульсы направленного движения молекул в соприкасающихся слоях различные ( ). В виду хаотичного движения, молекулы верхнего слоя будут переносить свое количество движения в нижний слой, увеличивая его скорость, а наоборот, молекулы нижнего слоя будут переходить в верхний слой, уменьшая его скорость. В результате возникает сила трения, которая будет действовать вдоль площади параллельно скорости потока слоев. В данном случае переносимой молекулами физической характеристикой является количество движения, т.е. .

Предположим, что во всем объеме концентрация молекул постоянная величина. Тогда

,

,

где - изменение количества движения одного слоя относительно другого за время по пограничной площадке . Согласно II закону Ньютона

,

где -сила взаимодействия между слоями газа, действующие в плоскости соприкосновения слоев, называемая силой внутреннего трения. Таким образом,

.

Подставляя приведенные выражения для и в уравнение переноса, получим:

,

или

. (4.16)

В термодинамике необратимых процессов это явление описывается уравнением Ньютона, записанным в виде:

, (4.17)

где - коэффициент внутреннего трения или вязкость. Как следует из (4.16) и (4.17)

. (4.18)

Коэффициент , входящий в (4.17) называют динамической вязкостью. Единица измерения в системе СИ . Коэффициент, определяемый выражением , называют кинематической вязкостью, .

Рассмотрим зависимость вязкости от термодинамических параметров давления и температуры. Как было показано в случае коэффициента теплопроводности, произведение не зависит от давления, тогда вязкость также не будет зависеть от давления. Вязкость, также как и коэффициент теплопроводности, должен зависеть от температуры, так как в выражении (4.18) входит средняя скорость тепловых движений молекул, зависящая от температуры по закону . Значит, коэффициент вязкости также должен расти с повышением температуры пропорционально . В действительности, вязкость растет несколько быстрее, чем . Это связано с тем, что с повышением температуры не только растет тепловая скорость молекул, но и уменьшается эффективное поперечное сечение молекул, и поэтому растет длина свободного пробега.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]