Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Molekulyarnaya_fizika_i_termodinamika.doc
Скачиваний:
39
Добавлен:
26.09.2019
Размер:
3.1 Mб
Скачать

§2. Нелинейная термодинамика

Нелинейная термодинамика имеет дело с открытыми системами, далёкими от равновесия, когда связь между термодинамическими потоками и силами перестаёт быть линейной, а соотношение Онзагера не выполняется. Открытые системы в отличие от замкнутых или изолированных систем могут обмениваться с окружающими телами как энергией и веществом, так и информацией. Открытые системы являются макроскопическими, то есть состоят из очень большого числа структурных объектов, принимаемых за элементарные. Установлено, что в нелинейной области неравновестности открытые системы способны развиваться, то есть спонтанно образовывать упорядоченные структуры, само- организовываться. Отдельные примеры подобных процессов были известны. Это возникновение турбулентности, вихрей, образование ячеистой структуры в неоднородно нагретом горизонтальном слое жидкости. Общим во всех явлениях образования упорядоченных структур при необратимых процессах в сильно неравновесных, открытых системах, является совместное кооперативное движение больших групп молекул или других элементарных структурных единиц системы. Немецкий учёный Хакен предложил для таких процессов самоорганизации общий термин «синергетика» - в переводе с греческого означает совместное, кооперативное действие.

Физическая природа синергетики состоит в том, что нелинейной области вдали от равновесного состояния система теряет устойчивость и малые флуктуации приводят к новому режиму – совокупному движению многих частиц.

§3. Принцип синергетики

В открытых системах, вдали от равновесия, в нелинейной области реализуется принцип «неравновесность» - источник упорядоченности. Энтропия, служащая мерой беспорядка, может уменьшиться в открытых системах с течением времени, благодаря связи системы с окружающей системой. Открытая система подводимую от внешнего источника энергию диссипирует в термостат, при этом внутрисистемное производство энергии увеличивается, т.е. . Однако если система экспортирует энтропию во внешнюю среду, т.е. потоковое слагаемое энтропии отрицательное.

.

Если

,

то полная энтропия открытой системы уменьшается. Такая система становиться активной, т. е. способной к самоорганизации. В активной среде возникает устойчивая флуктуация, которая становиться источником образования новой структуры.

Структуры, возникающие в результате самоорганизации открытых нелинейных систем, Пригожин назвал диссипативными. Эффект образования диссипативных структур классифицируется как кинетический фазовый переход. В отличие от классических термодинамических фазовых переходов (плавление, кристаллизация), у которых радиус корреляции имеет атомные масштабы, в случае кинетических фазовых переходов радиус корреляции сложной системы достигает макромасштабы.

С хема термодинамической ветви развития открытых систем приведена на рисунке 1. Точки 1,2,3 пороговые значения управляющего параметра, при достижении которых открытая система теряет динамическую устойчивость (состояния A,B,C)

Состояния неустойчивости A,B,C называются бифуркациями. В точке бифуркации система становиться весьма чувствительной к слабым сигналам, от которых зависит вариант образования диссипативных структур, то есть дальнейший путь развития системы. Между точками бифуркаций в системе выполняются детерминистические законы, но в окрестности точек бифуркации важную роль играют флуктуации и вероятностные закономерности. Нелинейная термодинамика коренным образом изменяет статус II начала термодинамики. Этот закон определяет не только разрушение структур при необратимых процесса вблизи равновесного состояния, но и возникновения структур при необратимых процессах, вдали от равновесия открытой системы. Отражая необратимость всех реальных процессов, второе начало отражает закон развития материи.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]