
- •Тема 1. Комплексная микроминиатюризация и автоматизированные
- •Цели и задачи микроэлектронной аппаратуры
- •Основные пути выбора конструктивно-компоновочной схемы и методов монтажа мэа
- •Элементная база и ее влияние на конструкцию мэа
- •Корпусированная элементная база
- •Динамика развития основных исходных конструкторских
- •Бескорпусная элементная база
- •Исходные данные задания
- •Порядок выполнения задания
- •Пример выполнения задания практического занятия
- •Результаты, полученные при выполнении задания
- •Тема 2. Конструктивные исполнения и современные технологии сборки элементной базы.
- •Микросхемы, элементы, компоненты
- •Классификация микросхем
- •Современные корпуса дискретных полупроводниковых приборов или их сборок
- •Современные корпуса дискретных полупроводниковых приборов или их сборок
- •Бескорпусная элементная база
- •Имс с проволочными выводами
- •Термокомпрессионная сварка
- •Сварка с косвенным импульсным нагревом
- •Кристаллы с балочными выводами
- •Имс с организованными шариковыми выводами
- •Имс с организованными выводами на гибком носителе
- •Классификация типов ленточных носителей
- •Одноточечная автоматизированная сборка на ленту-носитель
- •Резисторы
- •Основные сведения об объемных резисторах
- •Конденсаторы
- •Относительные диэлектрические проницаемости
- •Катушки индуктивности
- •Технология монтажа пассивных компонентов
- •Практическое занятие оптимизация технологических режимов процесса микроконтактирования бескорпусных кристаллов сбис в электронных устройствах с высокоплотным монтажом
- •Теоретические сведения Элементная база для сборки и монтажа мэу
- •Оценка и анализ качества микроконтактирования
- •Порядок выполнения заданий
- •Примеры выполнения заданий практического занятия Задание 1
- •Задание 2
- •Тема 3. Многоуровневые коммутационные системы.
- •Монтаж микросборок и ячеек мэа
- •Сводные характеристики многослойных керамических плат
- •Типы печатных плат
- •Двухсторонние печатные платы
- •Многослойные печатные платы
- •Гибкие печатные платы
- •Рельефные печатные платы (рпп)
- •Характеристики рельефных плат
- •Сравнение технологических и стоимостных характеристик рельефной и многослойной печатной платы
- •Гибкие печатные платы
- •Основные элементы конструкции гибких печатных плат
- •Полиимидные пленки
- •Адгезивы
- •Гибко-жёсткие печатные платы
- •Миниатюрные охлаждающие агрегаты
- •Радиаторы
- •Теплопроводящие трубки
- •Углеродные нанотрубки
- •Охлаждение элементом Пельтье
- •Плоские теплоотводы
- •Охлаждение микросхем распылением на них жидкости
- •Капиллярная система теплоотвода ibm
- •Особенности обеспечения теплоотвода в теплонапряженных модулях
- •Обеспечение теплоотвода при монтаже высокоскоростных модулей на основе бескорпусных бис
- •Конструкции и компоновочные схемы радиоэлектронных ячеек
- •Особенности конструктивно-технологических принципов построения мэа свч диапазона и источников вторичного электропитания.
- •Особенности монтажа микросборок и ячеек свч диапазона.
- •Теоретические сведения
- •Сравнительные параметры мкп, выполненных по различным технологиям
- •Исходные данные заданий
- •Пример выполнения задания практического занятия
- •Тема 4. Технологии внутриячеечного монтажа.
- •Лекция 18. Паяные соединения. Особенности и способы пайки. Бесфлюсовая пайка. Контроль качества. Бессвинцовая технология пайки. Общее понятие процесса пайки и паяных швов.
- •Технология пайки
- •Основный виды пайки.
- •Способы пайки.
- •Типы паяных соединений.
- •Подготовка деталей к пайке и пайка.
- •Дефекты паяных соединений и контроль качества. Типы дефектов паяных соединений.
- •Контроль качества.
- •Возможные дефекты
- •Выбор припойной пасты.
- •Состав припойных паст.
- •Характеристики частиц в припойных пастах.
- •Свойства флюсов.
- •Трафаретный метод нанесения припойной пасты.
- •Диспенсорный метод нанесения припойной пасты
- •Нанесение припойной пасты.
- •Результаты выполнения задания
- •Тема 5. Конструкторско-технологические особенности
- •Лекция 24,25. Герметизация компонентов рэа. Способы контроля герметичности.
- •Структура процесса герметизации
- •Входной контроль
- •Приготовление герметизирующего состава
- •Подготовка герметизируемого изделия
- •Герметизация изделий
- •Сварка.
- •Пропитка
- •Обволакивание
- •Заливка
- •Опрессовка
- •Герметизация капсулированием
- •Герметизация в вакуум-плотных корпусах
- •Практическое занятие герметизация эвс и их конструктивов
- •Теоретические сведения
- •Исходные данные задания
- •Пример выполнения задания практического занятия
- •Порядок выполнения задания
- •Пример выполнения задания практического занятия
Охлаждение элементом Пельтье
Термоэлектрические пластины (рис.1.6) используют эффект Пельтье (обратный эффект термопары, заключающийся в том, что при протекании тока через два соприкасающихся полупроводника от одного к другому, пластина нагревается с одной стороны и охлаждается с другой, причём перепад температур на обоих сторонах пластины одинаков. За это свойство модуль Пельтье называют термонасосом. Сам по себе он не может охладить процессор. Он просто перекачивает выделяемое тепло от одной обкладки к другой - от процессора к кулеру. Получается, что термоэлектрический насос имеет холодную сторону, где тепло поглощается, и горячую, где выделяется. Причём, как и в случае с обычным насосом, выделяемое тепло должно куда-то отводиться, то есть, его надо охлаждать кулером. Но на горячей стороне термопары выделяется также тепло, образующееся в следствии потерь, так как по ней тоже течёт ток, а законы физики никто не отменял. В итоге кулер должен охладить не только выделяемое процессором тепло, но и тепло, выделяемое самой термоэлектрической пластинкой, так как эффективность у неё не 100% и сам модуль Пельтье сильно греется.
Рис.1.6. Охлаждающий модуль на эффекте Пельтье
Плоские теплоотводы
Компания Furukawa Electric (Япония) разработала очень тонкий, подобный листу бумаги, теплоотвод, который позволит охлаждать полупроводниковые микросхемы в мобильных электронных устройствах типа ноутбуков, сотовых телефонов и КПК. Теплоотвод может также использоваться для регулирования разницы температур внутри корпуса устройств.
Рис.1.7. Типовые плоские теплоотводы
Поскольку домашняя электроника и коммуникационные устройства становятся все легче, тоньше и меньше, установка обычных теплоотводов становится затруднительной из-за ограниченного места. Возникает необходимость в разработке эффективного проводника тепла, который был бы тонким и гибким как бумага, при этом обеспечивая функции рассеивания тепла и теплорегуляции. Толщина разработанного японцами теплоотвода меньше 1 мм (рис.1.7). А поскольку его размеры могут свободно изменяться в зависимости от нужд устройства, теплоотвод легко устанавливается на свободное место любого размера.
Новинка довольно эффективна при решении многих температурных проблем, например, устранения нагревания, уравнивания температур и рассеивания тепла. К примеру, теплоотвод толщиной 0,6 мм, широтой 20 мм и длиной 150 мм может рассеять до 10 Вт тепловой энергии. Если же он будет несколько толще, например, 1 мм, то количество рассеиваемой энергии увеличится до 20-30 Вт.
Охлаждение микросхем распылением на них жидкости
Hewlett Packard намеревается применить для охлаждения интегральных схем технологии, разработанные для струйных принтеров. Эта разработка позволит добиться повышенной производительности электронного оборудования, без затрат на жидкое охлаждение. Принцип распыленного охлаждения весьма прост по своей сути. Он схож с механизмом охлаждения человеческого тела путем испарения влаги. Однако электронные приборы не выделяют влагу, поэтому охладители нужно распылять над поверхностью плат и блоков, где они будут нагреваться и испаряться. HP предложила использовать для охлаждения позиционную программируемость головок струйных принтеров. Для этого будет создана температурная карта чипа, и жидкость будет наноситься в те места, где это требуется. По заявлению компании, такая технология намного опережает все существующие методы охлаждения, как по качеству, так и по цене.