
- •Предисловие
- •Введение
- •Глава 1. Кинематика материальной точки и твердого тела
- •1.1. Кинематика поступательного движения материальной точки и твердого тела
- •1.2. Кинематика вращательного движения материальной точки
- •Контрольные вопросы:
- •Глава 2. Динамика материальной точки и поступательного движения твёрдого тела
- •2.1. Принцип относительности Галилея
- •2.2. Основные величины динамики
- •2.3. Законы Ньютона
- •Глава 3. Законы сохранения энергии и импульса
- •3.1. Сохраняющиеся величины
- •3.2. Работа. Мощность. Коэффициент полезного действия
- •3.3. Понятие поля. Консервативные силы. Потенциальная энергия
- •Пример 1.
- •Пример 2.
- •3.4. Кинетическая энергия
- •3.5. Закон сохранения механической энергии системы невзаимодействующих частиц
- •3.6. Закон сохранения полной механической энергии
- •3.7. Закон сохранения импульса
- •3.8. Применение законов сохранения энергии и импульса
- •Неупругий удар
- •Упругий удар
- •Явление отдачи при вылете снаряда из орудия
- •Контрольные вопросы:
- •Глава 4. Силы в природе
- •4.1. Взаимодействие в природе. Закон всемирного тяготения
- •4.2. Сила тяжести. Вес тела. Невесомость
- •Движение тела под действием силы тяжести
- •1. Движение тела вверх:
- •2. Движение тела вниз:
- •Движение тела по горизонтали:
- •4.3. Упругие силы
- •4.4. Силы трения
- •Трение покоя
- •Контрольные вопросы:
- •Глава 5. Динамика твердого тела
- •5.1. Движение твердого тела
- •5.2. Степени свободы
- •5.3. Центр масс
- •5.4. Момент импульса
- •5.5. Главные моменты инерции
- •Теорема Гюйгенса – Штейнера
- •5.6. Момент силы
- •5.7. Кинетическая энергия вращающегося твердого тела
- •Глава 6. Закон сохранения момента импульса
- •6.1. Закон сохранения момента импульса
- •6.2. Условие сохранения момента импульса относительно оси для незамкнутой системы
- •6.3. Закон сохранения момента импульса для вращающейся системы тел
- •6.4. Применение закона сохранения момента импульса
- •Контрольные вопросы:
- •Глава 7. Колебательное движение
- •7.1. Классификация колебательного движения
- •7.2. Гармонические колебания
- •7.3. Математический маятник
- •7.4. Физический маятник
- •7.5. Сложение колебаний Сложение одинаково направленных колебаний
- •Сложение взаимно перпендикулярных колебаний
- •7.6. Затухающие колебания
- •7.7. Вынужденные колебания
- •Контрольные вопросы:
- •Глава 8. Молекулярная физика
- •8.1. Основные положения молекулярно-кинетической теории
- •Основные величины, характеризующие массу, размер и число молекул в веществе:
- •8.2. Уравнение состояния идеального газа
- •Уравнение состояния идеального газа
- •8.3. Основное уравнение молекулярно-кинетической теории
- •Основное уравнение мкт:
- •8.4. Взаимодействие молекул
- •8.5. Реальные газы. Уравнение Ван-дер-Ваальса Фазовые равновесия и переходы
- •8.6. Характеристики жидкого состояния
- •5. Жидкости с водородными связями (h2o);
- •Свойства жидкостей:
- •Контрольные вопросы:
- •Глава 9. Равновесная термодинамика
- •9.1. Внутренняя энергия
- •9.2. Работа. Количество теплоты
- •9.3. Термодинамические системы
- •9.4. Первое начало термодинамики
- •9.4. Первое начало термодинамики
- •9.5. Второе и третье начало термодинамики
- •Второе начало термодинамики
- •Третье начало термодинамики
- •9.6. Теплоёмкость идеального газа
- •9.7. Применение первого начала термодинамики для вывода уравнения адиабатного процесса
- •Уравнение адиабатного процесса в параметрах t,V:
- •9.8. Работа, совершаемая газом при различных процессах
- •9.9. Графическое изображение термодинамических процессов
- •9.10. Применение законов термодинамики для расчета круговых процессов
- •К. П. Д. Идеальной тепловой машины Карно
- •Теорема Карно:
- •Контрольные вопросы:
- •Глава 10. Элементы статистической физики
- •10.1. Статистический вес
- •10.2. Энтропия
- •10.3. Распределение Гиббса
- •10.4. Распределение молекул по скоростям Максвелла
- •10.5. Распределение Больцмана молекул в потенциальном поле. Барометрическая формула
- •Контрольные вопросы:
- •Глава 11. Электростатическое поле
- •11.1. Закон сохранения заряда
- •11.2. Взаимодействие зарядов. Закон Кулона
- •Закон Кулона
- •Принцип суперпозиции сил
- •11.3. Напряженность электрического поля
- •Принцип суперпозиции напряженностей
- •Контрольные вопросы:
- •Глава 12. Теорема остроградского-гаусса для электростатического поля
- •12.1. Теорема Остроградского-Гаусса для электростатического поля в вакууме
- •12.2. Применение теоремы Остроградского - Гаусса для расчета электростатического поля равномерно заряженного сферического проводника
- •12.3. Применение теоремы Остроградского - Гаусса для расчета электростатического поля бесконечной заряженной плоскости
- •12.4. Применение теоремы Остроградского - Гаусса для расчета электростатического поля бесконечного заряженного цилиндра
- •Г 153 лава 13. Работа электрического поля. Потенциал.
- •13.1. Работа электрического поля по перемещению заряда
- •13.2. Потенциальная энергия взаимодействия зарядов
- •13.3. Электрический потенциал
- •13.4. Потенциал заряженной сферы, плоскости, цилиндра
- •Потенциал электрического поля заряженной плоскости:
- •Потенциал электрического поля заряженного цилиндра:
- •Глава 14. Диэлектрики в электростатическом поле
- •14.1. Проводники и диэлектрики
- •14.2. Типы диэлектриков
- •14.3. Поляризация диэлектриков
- •14.4. Напряженность электрического поля и электрическое смещение
- •Контрольные вопросы:
- •Глава 15. Проводники в электростатическом поле
- •15.1. Распределение зарядов в проводниках
- •15.2. Электроемкость проводников
- •Электроемкость сферического проводника
- •15.3. Конденсаторы
- •Электроемкость плоского конденсатора
- •15.4. Энергия заряженных проводников и конденсаторов. Энергия электрического поля
- •Глава 16. Постоянный ток закон ома
- •16.1. Электрический ток
- •16.2. Разность потенциалов, напряжение и электродвижущая сила
- •16.3. Закон Ома. Сопротивление проводников
- •16.4. Закон Ома для участка цепи и замкнутой цепи. Закон Ома для плотности тока
- •Контрольные вопросы:
- •Глава 17. Работа электрического тока. Мощность. Закон джоуля – ленца
- •17.1. Работа электрического тока
- •17.2. Мощность электрического тока
- •17.3. Закон Джоуля - Ленца для участка цепи
- •17.4. Применение закона Джоуля – Ленца
- •Контрольные вопросы:
- •Глава 18. Релятивистская кинематика
- •18.1. Теория относительности Эйнштейна
- •Преобразования Лоренца для координат и времени
- •18.2. Следствия из преобразований Лоренца
- •18.3. Интервал между двумя событиями. Абсолютность интервала
- •18.4. Преобразование скоростей
- •Глава 19. Релятивисткая динамика
- •19.1. Принцип наименьшего действия Гамильтона
- •19.2. Импульс частицы
- •19.3. Сила
- •19.4. Энергия
- •19.5. Связь между энергией и импульсом
- •19.6. Четырехмерные векторы
- •19.7. Законы сохранения в релятивистской механике
- •Список литературы
- •Содержание предисловие 3 введение 4
- •Список литературы 215
Контрольные вопросы:
Основные термодинамические величины: количество теплоты, работа, внутренняя энергия, теплоемкость удельная и молярная, теплоемкость при постоянном объеме и при постоянном давлении.
Свойства энтропии. Первое начало термодинамики. Второе начало термодинамики. Третье начало термодинамики.
Число степеней свободы молекул. Показатель адиабаты. Вывод уравнения адиабатного процесса. Вывод уравнения Роберта-Майера.
Работа, совершаемая при различных изопроцессах.
Типы термодинамических систем. Системы, которые рассматриваются в равновесной термодинамике.
Круговые процессы. Обратимые и необратимые процессы.
Идеальная тепловая машина. Цикл Карно. КПД идеальной тепловой машины. Реальная тепловая машина. Цикл Дизеля.
Графическое изображение термодинамических процессов.
Холодильные машины.
Работа в адиабатном процессе. Работа при изотермическом процессе. Работа при изобарном процессе.
Глава 10. Элементы статистической физики
10.1. Статистический вес
Рассмотрим систему, состоящую из большого количества молекул. Назовем ее макроскопической системой. Состояние такой системы можно описать двумя способами:
1. С помощью средних характеристик системы, например, давления P, объёма V, температуры T, энергии Е. Состояние, заданное характеристиками, усреднёнными по большому числу молекул, будем называть макросостоянием.
2. Путем описания состояния всех образующих тело молекул, для этого необходимо знать координаты q и импульсы p всех молекул. Состояние, заданное таким образом, назовём микросостоянием.
Пусть макроскопическая система является частью какой – либо большой замкнутой системы, будем называть ее средой. Найдём микроскопическое распределение Гиббса, т.е. функцию распределения вероятностей различных состояний макроскопической системы, не взаимодействующей с окружающими телами и имеющей постоянную энергию. Различные состояния системы, имеющие одну и ту же энергию, имеют одинаковую вероятность.
Каждому значению энергии макроскопической системы могут соответствовать различные микросостояния, число таких состояний называется статистическим весом.
Пусть задано макросостояние системы из 4 молекул с помощью параметров: P, V, T, E. Молекулы находятся в сосуде, разделенном проницаемой перегородкой (рис. 10.1а). Cосуд находится в некоторой среде, но не взаимодействует с ней.
Рис. 10.1а. Рис. 10.1б. Рис. 10.1в.
Если
все 4 молекулы находятся в правой
половине сосуда, то макросостояние
системы (0 - 4) можно записать с помощью
одного микросостояния, перечислив
номера молекул. В этом случае статистический
вес
.
Пусть
теперь одна из молекул перешла в левую
половину сосуда (рис. 10.1б). Это может
быть молекула 1, тогда в правой половине
останутся молекулы 2, 3, 4 или это молекула
2, тогда справа останутся молекулы 1, 3,
4 и т.д. Всего возможны 4 различных
микросостояния, следовательно,
статистический вес макросостояния (1
- 3)
.
Вероятности всех микросостояний одинаковы. Состояние, когда молекула 1 слева, а 2, 3, 4 справа, имеет такую же вероятность, как состояние, когда молекула 2 слева, а 1, 3, 4 справа. Этот вывод основан на предположении, что все молекулы неотличимы друг от друга.
Равномерное
распределение молекул по обеим половинам
сосуда становится очевидным при большом
количестве молекул. Мы знаем, что
давление выравнивается со временем в
обеих половинах сосуда:
а поскольку концентрация молекул
то
и при постоянной температуре одинаковым
будет число молекул слева и справа:
где
Поскольку
наибольшему статистическому весу
соответствует наибольшая вероятность
состояния w,
то очевидно, вероятность пропорциональна
числу состояний. Состояние (2 - 2) является
наиболее вероятным, т.к. имеет наибольший
статистический вес
(рис. 10.1в).