Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Фізика твердого тіла Бібік В.В, Гричановська Т.....doc
Скачиваний:
90
Добавлен:
21.12.2018
Размер:
7.36 Mб
Скачать

6.6. Елементи теорії Ландау. Процеси перемагнічування

Під доменною структурою розуміють розбиття феромагнетика на малі області, всередині яких напрям магнітних моментів атомів є паралельним, але відмінним від напряму моментів у сусідній області. Доменна структура є природним наслідком наявності у феромагнетика різних типів взаємодії, які, у свою чергу, вносять певний вклад у величину його енергії.

Як відомо, енергія феромагнітних матеріалів містить у собі енергію обмінної взаємодії Еобм, енергію магнітної анізотропії Ема та магнітну енергію магнетика в зовнішньому полі Ем. Отже, повна енергія кристала дорівнює

Е=Еобммам. (6.15)

У кристалах кінцевих розмірів однодоменна магнітна структура є енергетично невигідною. Якщо ж такий кристал розбити на декілька доменів так, щоб намагнічення в сусідніх доменах були напрямлені антипаралельно, то магнітна енергія такого зразка буде меншою (або такою, що дорівнює нулю). Отже, така структура енергетично вигідніша, оскільки сумарна енергія стане мінімальною.

„Найвигідніша" доменна структура, у якій наявні замикаючі домени з намагніченістю, перпендикулярною до JS основних доменів. Для такої структури магнітний потік залишається всередині кристала (звідси і пішла назва „замикаючі" домени), а магнітна енергія, яка пов'язана з розмагнічуючим полем, є такою, що дорівнює нулю. Зауважимо, що напрям JS у „замикаючих" доменах не збігається з віссю легкого намагнічування.

Виникнення доменів супроводжується утворенням доменних меж (доменних стінок), які розділяють домени з різним напрямом JS. При утворенні доменних стінок змінюється обмінна енергія та енергія магнітної анізотропії, тому їхня товщина визначається мінімумом загальної енергії магнетика.

Теорія Вейса залишила відкритими ряд важливих питань:

- якими є форма і розміри доменів?

- як здійснюється поворот намагніченості при переході із одного домена до сусіднього?

Вперше строгі відповіді на ці питання було дано в 1935 р. Ландау і Ліфшицем [20] на моделі одноосного кристала.

Ландау і Ліфшиц розглянули зразок у вигляді нескінченної плоскопаралельної пластини одноосного феромагнетика, перпендикулярної до осі легкого намагнічування. Тобто задались структурою, показаною на рис. 6.4. Мінімізація її енергії, що складається з енергії доменних меж і енергії магнітної кристалографічної анізотропії замикаючих призм (які забезпечують відсутність енергії зовнішнього магнітного поля), дала товщину домена

,

де - енергія анізотропії; одного домена (поверхнева енергія доменної межі); L – товщина пластини; К – стала магнітної кристалографічної анізотропії [21].

Обчислена за цією формулою ширина домена для кобальту [5] при товщині кристала L=1 см дорівнює D~3·10-3 см, тобто становить приблизно 105 міжатомних відстаней. З підвищенням температури ширина доменів має зростати, оскільки із зростанням температури зменшується константа анізотропії К. Однак зростання ширини домена виявляється меншим від температурного збільшення товщини стінок,

Рисунок 6.4 - Доменна структура в пластині феромагнетика. Вісь легкого намагнічування паралельна осі Z

тому результуючим ефектом стає зменшення ширини домена (а отже, і об'єму) з підвищенням температури.

Розглянемо способи реалізації розвороту магнітних моментів у доменній межі. Залежно від характеру розвороту розрізняють два граничні випадки доменних меж: блохівську та неєлівську. На межі Блоха обертання магнітного моменту відбувається в площинах, паралельних площині межового шару. На межі неєлівського типу обертання відбувається в площині, яка є перпендикулярною до площини межового шару. За розрахунками Ландау і Ліфшица поворот намагніченості при переході із одного домена до сусіднього відбувається плавно за законом

,

де - кут повороту; b – відстань, на якій в основному виконується поворот (товщина межі); yкоордината (рис. 6.5).

У разі відсутності зовнішнього магнітного поля найвигіднішим для феромагнетика є стан, коли він розбивається на велику кількість доменів, які, у свою чергу, намагнічені до насичення (при даній температурі). У цьому разі домени з однаковим напрямом займають рівні частини кристала, так що в цілому феромагнетик не намагнічений. Якщо включити

Рисунок 6.5 - Поворот векторів намагніченості в блохівській магнітній стінці [20]

зовнішнє поле уздовж виділеного напряму, то феромагнетик почне намагнічуватись: уздовж напряму з'явиться відмінна від нуля складова намагніченості. Перехід в цей стан – намагнічування зразка – відбувається внаслідок двох процесів:

- переміщення доменних меж, яке супроводжується ростом доменів, намагніченість яких становить гострий кут з (процеси зміщення);

- поворот намагніченостей доменів у напрямку поля (процеси обертання).

З цього виразу випливає, що є два типи процесів, які супроводжують так зване технічне намагнічування феромагнетика. Перший процес зумовлений збільшенням об'єму доменів, їхня намагніченість є орієнтованою по полю за рахунок об'єму сусідніх доменів, в яких напрям намагніченості не є орієнтованим уздовж поля (а отже, енергетично невигідний). Процесу зміщення відповідає ділянка ОА кривої 1 на рис. 6.6. Другий процес зумовлений зміною напряму спонтанної намагніченості окремих доменів під час їхнього обертання - ділянка АВ, рис. 6.6.

Після процесів зміщення та обертання завершальним етапом намагнічення стає парапроцес - істинне намагнічення (рис. 6.6 - ділянка справа від точки В). Парапроцес зумовлений орієнтацією в зовнішньому полі елементарних носіїв магнетизму, які залишилися неорієнтованими внаслідок розорієнтуючої дії температури. У більшості випадків парапроцес дає незначний внесок у намагнічення, і тому на практиці намагнічування вважають закінченим у разі досягнення технічного насичення (точка В). Для пара- та діамагнетиків криві намагніченості мають вигляд прямих (рис. 6.6).

Рисунок 6.6 - Криві намагнічення феромагнетика (1), парамагнетика (2) та діамагнетика (3)

Процеси, що супроводжують технічне намагнічення феромагнетика, можуть бути оборотними або необоротними залежно від того, яка величина енергії розсіюється у вигляді тепла. Звичайно головні втрати енергії відбуваються у процесі обертання, тому саме ці процеси визначають явище магнітного гістерезису: нелінійність залежності намагніченості, а як наслідок, і магнітної індукції від напруженості магнітного поля (рис. 6.7). З петлі гістерезису визначають головні характеристики феромагнітного матеріалу: намагнічення насичення (або індукція насичення Вs), залишкове намагні-чення (або залишкова індукція Вr), коерцитивну силу Нс.

У феромагнітних матеріалах є різні типи магнітного гістерезису, серед яких виділяють три головні, зумовлені:

  • затримкою зміщення меж між доменами (необоротне зміщення);

  • затримкою росту зародків перемагнічення;

  • необоротними процесами обертання доменів.

Рисунок 6.7 - Криві намагнічування феромагне­тика В(Н): 1 – початкова крива; 2 – основна петля гістерезису

Енергія, що витрачається на перемагнічування феромагнетика, перетворюється в тепло. Отже, у зовнішньому електромагнітному полі феромагнетик нагрівається як за рахунок вихрових струмів, так і за рахунок втрат на гістерезис. Гістерезисні втрати пропорційні площі петлі. Враховуючи це, для роботи у змінних полях використовують матеріали, що мають високу магнітну проникність (круту криву намагнічення) та вузьку петлю гістерезису (малу коерцитивну силу), тобто магнітно-м’які матеріали. Матеріали, що мають велике значення HC та значну залишкову індукцію Br, називають магнітно-жорсткими і використовують як постійні магніти.