- •Основы теории управления
- •Историческая справка
- •Основные понятия и определения тау
- •Структурные схемы
- •Пример типовой функциональной схемы сау
- •Детектирующие свойства элементов систем
- •Математическое описание сау
- •Уравнения динамики и статики
- •Линеаризация
- •Методология математического описания сау
- •Классификация сау
- •1. Классификация по характеру динамических процессов в системе
- •1.1. По виду сигналов, протекающих по контуру системы.
- •1.2. По виду дифференциальных уравнений.
- •1.3. По условиям функционирования.
- •2. Классификация по характеристикам управления
- •2.1. По принципу управления.
- •2.2. По режимам функционирования.
- •2.3. По свойствам системы в установившемся режиме.
- •3. Классификация сау по другим признакам
- •Основные (типовые) управляющие воздействия сау
- •Принцип суперпозиции для линейных систем
- •Временные характеристики сау
- •Переходные характеристики h(t) и (t) называют временными.
- •Передаточной функцией w(p) называют отношение изображения выходной величины к изображению входной величины при нулевых начальных условиях:
- •Частотные динамические характеристики
- •Классификация звеньев. Типовые динамические звенья
- •Апериодическое звено
- •Существует так называемое неустойчивое апериодическое звено
- •Колебательное звено
- •Общие свойства статических звеньев
- •Интегрирующие звенья
- •Идеальное интегрирующее звено
- •Реальное интегрирующее звено
- •Общие свойства интегрирующих звеньев
- •Изодромное интегрирующее звено
- •Идеальное дифференцирующее звено
- •Реальное дифференцирующее звено
- •Структурные преобразования схем сау
- •Типовые элементы структурных схем сау
- •Многоконтурные структурные схемы
- •Некоторые правила структурных преобразований
- •Изображение структурных схем в виде графов
- •Векторно-матричная форма описания многомерных элементов
- •Способ описания вход-выход
- •В общем случае каждая входная переменная связана с каждой выходной переменной. Если взаимосвязи по всем каналам линейны (линеаризованы), то в общем случае элемент можно описать следующей системой:
- •Описание сау методом пространства состояния
- •Схемы переменных состояний (спс)
- •Метод прямого программирования (базовый)
- •Методы последовательного и параллельного программирования
- •Схемы переменных состояния типовых звеньев
- •Связь между описанием “вход-выход” и мпс
- •Матрица перехода. Аналитический способ получения матрицы перехода
- •Получение изображения матрицы перехода по схеме переменных состояния
- •Получение матрицы перехода разложением в ряд
- •Устойчивость систем сау
- •Если свободная составляющая неограниченно возрастает, т.Е. Если
- •Алгебраические критерии устойчивости
- •Критерий Гурвица. Автоматическая система, описываемая характеристическим уравнением
- •Критерий Рауса.
- •Частотные критерии устойчивости
- •Принцип аргумента. Рассмотрим уравнение:
- •Критерий Михайлова Рассмотрим характеристическое уравнение системы
- •Критерий Найквиста
- •У замкнутой системы изменение аргумента при изменении частоты от 0 до :
- •Система неустойчивая.
- •Запас устойчивости Запас устойчивости по алгебраическому критерию Гурвица
- •Запас устойчивости при частотных критериях устойчивости
- •Устойчивость систем со звеном чистого запаздывания
- •Влияние параметров на устойчивость системы.
- •Структурно устойчивые и структурно неустойчивые системы
- •Влияние структуры и передаточного коэффициента системы на устойчивость
- •Рассмотрим влияние передаточного коэффициентасистемы на устойчивость. Учтём, что для одноконтурных систем коэффициентkвходит в выражение для афчх как множитель:
- •Анализ качества сау
- •Основные (прямые) показатели качества сау
- •Прямые методы оценки качества (методы построения переходной характеристики)
- •Операторный метод:
- •2. Частотный метод.
- •Понятие обобщенной частотной передаточной функции
- •3. Моделирование с использованием вычислительных средств
- •Косвенные методы оценки показателей качества сау
- •Корневые методы оценки показателей качества
- •Смещенные уравнения
- •Влияние нулей передаточной функции на качество переходного процесса
- •Диаграмма Вышнеградского
- •Частотные методы Приближенное определение показателей качества по виду р() (Косвенный метод)
- •О тбрасываемая часть при частотах свышеПвлияет на начало переходной характеристикиh(t).
- •Построение вещественной частотной характеристики с использованием
- •Линейная интегральная оценка
- •Метод Кулебакина
- •Модульная интегральная оценка
- •Квадратичная интегральная оценка
- •Апериодическая интегральная оценка
- •Рассмотрим передаточную функцию типовой одноконтурной системы
- •Тогда ошибка будет зависеть только от задающего воздействия
- •Ошибки статических и астатических систем при типовых задающих воздействиях
- •Ошибка при возмущающем воздействии, не равном нулю
- •Основные понятия о синтезе систем управления
- •Особенности синтеза
- •Этапы синтеза сау
- •Т иповые законы регулирования линейных систем
- •Коэффициенты характеристического полинома замкнутой системы, оптимальные по критерию ивмо.
- •Синтез систем методом лачх
- •Желаемая лачх
- •Построение желаемой лачх
- •Синтез последовательных корректирующих устройств
- •Алгоритм построения сау с последовательными корректирующими звеньями
- •Синтез сау с параллельными корректирующими устройствами
- •Модальный регулятор.
- •Управляемость и наблюдаемость.
- •Импульсные сау
- •М атематическое описание дискретной системы
- •Главное достоинство и удобство z-преобразования заключается в том, что сама запись z-изображения указывает простой способ выполнения прямого и обратного преобразования:
- •Свойства z-преобразования аналогичны свойствам обычного преобразования Лапласа. Приведем важнейшие из них.
- •Дискретная передаточная функция
- •Передаточная функция на основе разностных уравнений
- •Примеры типовых дискретно-непрерывных систем
- •Годографы вектора f(ejt) для устойчивой и неустойчивой системы второго порядка показаны на рисунке.
- •Описание дискретных систем в терминах пространства состояния
- •Метод прямого программирования
- •Метод переменного коэффициента усиления.
Структурно устойчивые и структурно неустойчивые системы
Структурно устойчивой системой называется система, устойчивости которой можно добиться, изменяя параметры звеньев, при этом тип звеньев и их соединения остаются неизменными.
З

![]()
Устойчивость такой системы достигается путем изменения, например, коэффициентов усиления.
Структурно неустойчивой системой называется система, устойчивость которой может быть достигнута только после изменения структуры (замена типов звеньев или характеров соединений).
С

Влияние структуры и передаточного коэффициента системы на устойчивость
Существуют звенья, которые, как правило, ухудшают устойчивость системы, и звенья, которые почти всегда улучшают устойчивость.
Ухудшают:
Идеально-интегрирующее (их количество обозначим q)
Неустойчивое апериодическое (их количество обозначим t)
Консервативное (их количество обозначим r)
Улучшают:
Форсирующие (обычно первого порядка)
Если форсирующих звеньев нет, то условие структурной устойчивости замкнутой системы:

Рассмотрим влияние передаточного коэффициентасистемы на устойчивость. Учтём, что для одноконтурных систем коэффициентkвходит в выражение для афчх как множитель:
![]()
![]()
Это означает, что длина вектора W(jw) при всех значениях w пропорциональна k. При увеличении k АФЧХ расширяется и приближается к критической точке. Следовательно, увеличение передаточного коэффициента разомкнутого контура приводит к нарушению устойчивости.
Это правило справедливо для большинства реальных систем, у которых АФЧХ имеет форму плавной спирали. Но для клювообразных систем к нарушению устойчивости приводит не только увеличение, но и уменьшение k.
Значение передаточного коэффициента, при котором АФЧХ проходит через точку (-1; 0) называется предельным, или критическим.
Рассмотрим критерий Михайлова. У простых одноконтурных ситем k входит только в коэффициент an характеристического уравнения, причём
![]()
Если k возрастает, то будет возрастать только an, а характеристическая кривая D(jw) без деформации будет перемещаться вправо.
Таким образом, установлена одна из важнейших в ТАУ закономерностей:
Чем больше общий передаточный коэффициент разомкнутого контура, тем ближе замкнутая система к границе устойчивости.
Предельное значение коэффициента k зависит от соотношения постоянных времени звеньев. Например, система из трёх апериодических звеньев:
-
передаточная функция разомкнутого
контура.
Характеристическое уравнение всей системы:
![]()
где
![]()
по критерию Гурвица при границе устойчивости:
![]()
решим
это уравнение относительно kкр,
разделив на
,
получим:
![]()
Анализируя это уравнение, видим, что предельный коэффициент тем больше, чем больше разность между двумя наиболее различающимися постоянными времени, и чем ближе третья постоянная времени к среднеарифметическому значения двух первых.
Эта закономерность справедлива для систем любого порядка.
Получаем важное практическое правило:
Предельное значение передаточного коэффициента системы зависит от соотношения постоянных времени и не зависит от их абсолютных значений.
