Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
лекции / lekcii_teoriya_avtomaticheskogo_upravleniya.doc
Скачиваний:
278
Добавлен:
22.02.2014
Размер:
4.56 Mб
Скачать

Алгебраические критерии устойчивости

Необходимое условие устойчивости: положительность всех коэффициентов характеристического уравнения.

Критерий Гурвица. Автоматическая система, описываемая характеристическим уравнением

,

устойчива, если при a0>0 положительны все определители ∆1, ∆2, . . .∆п вида

Если хотя бы один из определителей, называемых определителями Гурвица, отрицателен, то система неустойчива. Если главный определитель ∆п=0, а все остальные определители положительны, то система находится на границе устойчивости.

Рассмотрим частные случаи критерия Гурвица для n=1;2;3;4. Раскрывая определители, фигурирующие в общей формулировке критерия, можно получить следующие условия.

1. Для уравнения первого порядка (n=1)

условие устойчивости: а0>0 и ∆1=а1>0, т.е. для устойчивости системы необходимо и достаточно, чтобы все коэффициенты характеристического уравнения были больше нуля.

2. Для уравнения второго порядка (n=2)

условие устойчивости:

Т.о., и для системы второго порядка необходимое условие устойчивости (положительность коэффициентов) является одновременно и достаточным.

3. Для уравнения третьего порядка (n=3)

условие устойчивости:

При n=3 для устойчивости системы необходимо и достаточно, чтобы все коэффициенты характеристического уравнения были больше нуля и произведение средних коэффициентов уравнения (а1, а2) было больше произведения крайних (а0, а3).

4. Для уравнения четвертого порядка (n=4)

кроме положительности всех коэффициентов требуется выполнение условия

.

При n=4 система будет устойчива при всех коэффициентах больших нуля и при

.

Т.о., для устойчивости систем не выше четвертого порядка необходимо и достаточно, чтобы все коэффициенты характеристического уравнения и определитель

п-1 были положительными.

Критерий Рауса.

САУ будет устойчивой, если будут положительны все элементы первого столбца таблицы Рауса (включая а0 и а1).

,

где i – номер строки, j – номер столбца.

Если не все коэффициенты столбца положительны, то система неустойчива. При этом число перемен знака среди этих коэффициентов соответствует числу правых корней характеристического уравнения.

Таблица:

Пример:

Характеристическое уравнение:

Частотные критерии устойчивости

На практике широкое распространение получили частотные критерии устойчивости: критерий Михайлова, критерий Найквиста. И тот, и другой критерии базируются на принципе комплексного аргумента.

Принцип аргумента. Рассмотрим уравнение:

,

здесь i – корни данного уравнения

.

Каждому корню i на комплексной плоскости соответствует некоторая точка. Если соединить точку с нулем, то можно говорить о векторе.

Д

лина вектора равна модулю комплексного числаi, а угол, образуемый положительной действительной осью и вектором i, есть аргумент комплексного числа i.

П

ридадим значение j (=j). Считаем движение против часовой стрелки положительным, тогда для корней, находящихся в левой части комплексной плоскости при изменении частоты , вектор (-i) описывает угол +.

Для корней, находящихся в правой полуплоскости, вектор (-i) при изменении частоты опишет угол -.

Считаем, что порядок системы п-ый , и m корней положительные, значит отрицательных – п-т. Тогда суммарный угол поворота всех векторов составит следующее выражение:

.