- •Глава 12. Электростатика. Электрический заряд и электростатическое поле
- •§12.1. Электрический заряд как источник электрического поля
- •§12.2. Понятие электростатического поля
- •§12.3. Принцип суперпозиции полей и поле точечного заряда
- •§12.4. Поле диполя
- •Глава 13. Электростатика. Теорема остроградского-гаусса для напряжённости электростатического поля в вакууме
- •§13.1. Вектор площади
- •§13.2. Телесный угол
- •§13.3. Поток вектора через поверхность
- •§13.4. Теорема ог
- •§13.5. Применение теоремы ог
- •Глава 14. Электростатика. Потенциал
- •§14.1. Потенциальность электростатического поля
- •§14.2. Понятие потенциала
- •§14.3. Связь между векторным полем напряжённости и скалярным полем потенциала
- •§14.4. Принцип суперпозиции полей в применении к потенциалу
- •§14.5. Примеры расчёта потенциалов полей разных конфигураций
- •§14.6. Энергия системы точечных зарядов
- •Глава 15. Электростатика.
- •§15.1. Диэлектрическая среда
- •§15.2. Неполярные диэлектрики
- •§15.3. Полярные диэлектрики
- •§15.4. Поляризация изотропного диэлектрика
- •§15.5. Теорема Остроградского-Гаусса для электростатического поля в диэлектрической среде
- •§15.6. Условия на границе раздела двух изотропных диэлектрических сред
- •§15.7. Заключение
- •Глава 16. Электростатика. Проводники в электростатическом поле
- •§16.1. Введение
- •§16.2. Распределение нескомпенсированного несвязанного заряда по электростатическому проводнику
- •§16.3. Пондеромоторные силы
- •§16.4. Электрическая ёмкость уединённого проводника
- •§16.5. Неуединённый проводник
- •§16.6. Конденсаторы
- •§16.7. Батареи конденсаторов
- •§16.8. Энергия электростатического поля
- •§16.9. Энергия поляризованного диэлектрика
- •Глава 17. Постоянный электрический ток. Законы постоянного тока
- •§17.1. Основные понятия
- •§17.2. Закон Ома в дифференциальной форме
- •§17.3. Закон Ома в интегральной форме для элементарного участка
- •§17.4. Закон Ома для неоднородного участка цепи (II-я форма интегрального закона Ома)
- •§17.5. Закон Ома для однородного участка цепи (I-я форма интегрального закона Ома)
- •§17.6. Закон Ома для простого контура (III-я форма интегрального закона Ома)
- •§17.7. Законы Кирхгофа
- •§17.8. Общий взгляд на интегральный закон Ома.
- •§17.9. Закон Джоуля-Ленца в интегральной форме
- •§17.10. Закон Джоуля-Ленца в дифференциальной форме
- •Глава 18 .Постоянный электрический ток. Классическая теория электропроводности металлов
- •§18.1. Экспериментальные доказательства электронной проводимости в металлах
- •§18.2. Классическая теория электропроводности металлов (теория Друде-Лоренца)
- •§18.3. Закон Видемана-Франца
- •§18.4. Трудности классической теории электропроводности
- •Глава 19. Магнетизм. Магнитное поле и его источники
- •§19.1. Магнитное поле и его воздействие на движущиеся заряды
- •§19.2. Релятивистская природа магнитного воздействия
- •§19.3. Сила Ампера
- •§19.4. Магнитный момент и воздействие на него магнитного поля
- •§19.5. Магнитное поле движущегося заряда
- •§19.6. Магнитное взаимодействие зарядов
- •§19.7. Закон Био-Савара-Лапласа
- •§19.8. Простейшие примеры применения закона Био-Савара-Лапласа
- •Глава 20. Магнетизм. Интегральные уравнения
- •§20.1. Теорема Остроградского-Гаусса для магнитного поля
- •§20.2. Работа силы Ампера на перемещении проводника с током в постоянном магнитном поле
- •§20.3. Закон полного тока (теорема Стокса) в вакууме
- •§20.4. Поле тороида
- •Глава 21. Магнетизм. Магнитное поле в веществе
- •§21.1. Орбитальные моменты
- •§21.2. Классический атом в магнитном поле
- •§21.3. Классификация веществ по их магнитным свойствам
- •§21.4. Диамагнетики
- •§21.5. Парамагнетики
- •§21.6. Магнитная восприимчивость
- •§21.7. Закон полного тока в магнетике
- •§21.8. Ферромагнетики
- •§21.9. Особенности намагничивания ферромагнетиков
- •§21.9. Магнитная восприимчивость и магнитная проницаемость ферромагнетика
- •Для того, чтобы размагнитить ферромагнетик…
- •Глава 22. Электродинамика. Электромагнитная индукция
- •§22.1. Закон Фарадея и правило Ленца
- •§22.2. Самоиндукция
- •§22.3. Замыкание и размыкание электрической цепи
- •§22.4. Энергия магнитного поля в неферромагнитной изотропной среде
- •Глава 23. Электродинамика. Основы теории максвелла
- •§23.1. Введение
- •§23.2. Сведения из математической теории поля
- •Ротор потенциального поля равен 0.
- •Дивергенция вихревого поля равна 0.
- •§23.3. Система уравнений Максвелла
- •§23.4. Четвертое уравнение Максвелла
- •§23.5. Второе уравнение Максвелла
- •§23.6. Первое уравнение Максвелла
- •§23.7. Третье уравнение Максвелла
- •§23.8. Заключение
§14.3. Связь между векторным полем напряжённости и скалярным полем потенциала
Очевидно, что
распределение в пространстве потенциала
данного электростатического поля с
точки зрения математики представляет
скалярное
поле
. Оказывается,
последняя формула предыдущего параграфа
указывает на то, чтовекторное
поле напряжённости
однозначно
определяется заданием скалярного поля
потенциала
.
Значит, данное электростатическое поле
одинаково успешно может быть представлено
как векторным полем
, так и скалярным
полем
. Покажем это.
Используя координатное представление скалярного произведения в декартовых координатах, перепишем выражение элементарного изменения потенциала:
.
С другой стороны,
поскольку
, то дифференциал
в соответствие с правилами дифференцирования
функции многих переменных
.
Сравнивая эти два равенства, приходим к выводу, что

Значит, действительно,
задание скалярного поля
определяет
все его частные производные, а это,
оказывается, определяет проекции вектора
на координатные
оси, что, очевидно, однозначно определяет
вектор
. Таким образом,поле
напряжённости получается в результате
процедуры трехмерного дифференцирования
поля потенциала.
Эта математическая процедура называется
градиентом.
В математике процедуру или совокупность действий по преобразованию функции называют оператором. Градиент является многомерным дифференциальным оператором. В трёхмерном случае (случай функции 3-х переменных) градиент обозначается и выражается так:
.
Есть ещё одно более
краткое обозначение, подчёркивающее
векторный характер оператора. Это символ
, называемый
вектором
набла. С его
помощью операция взятия градиента
скалярного поля
обозначается
как произведение вектора набла на скаляр:
.
Итак, мы можем записать:
.
Из собственного опыта мы знем, что физический смысл градиента достаточно труден для понимания. Поэтому нелишне будет воспроизвести здесь страницу из учебника математики и обсудить её.
Выберем в
пространстве, натянутом на декартовы
координаты, произвольное направление,
задаваемое ортом
, и введём
координату по этому направлениюL
(рис.14.3).
Рис.14.3
Если мы не будем
сходить с оси L,
то скалярная функция положения
будет
зависеть только от координаты L:

Из рисунка легко сообразить, что

Аналогично:
;
.
Теперь найдем
производную трёхмерной скалярной
функции
по направлению
, то есть
. По правилу
дифференцирования сложной функции
.
Но проекция орта
на направление
определяется
так:
, то есть

Тогда производная по направлению принимает вид:

Итак, пространственная
быстрота изменения скалярной функции
от положения
в направлении
равна скалярному
произведению градиента
на орт направления.
Значит, есть такие направления, вдоль
по которым
в данной точке пространства не меняется,
то есть
=0, следовательно,
.
Совокупность таких
направлений в данной точке пространства
образует поверхность

Рис.14.4
С другой стороны,
направление
(рис.14.4) будет
параллельно градиенту,
следовательно, вдоль по этому направлению
быстрота пространственного изменения
функции
будет максимальна и её абсолютная
величина будет, как раз, равна модулю
градиента. Отсюда «понятное» определение:
градиент
функции от пространства
в данной точке − это
вектор максимальной пространственной
быстроты изменения функции в этой точке.
Тогда для напряжённости электростатического
поля можно дать такое утверждение:
вектор
в данной точке
пространства есть вектор максимальной
пространственной скорости убывания
потенциала в этой точке.
Отсюда, кстати, проистекает наиболее
часто применяемая размерность
напряжённости:
.
Как следует из
сказанного, поверхность
в данной точке
пространства - это поверхность, вдоль
по которой потенциал не изменяется.
Такая поверхность называетсяэквипотенциальной.
Картина силовых линий − не единственный
способ представления потенциального
поля. Его можно представить совокупностью
эквипотенциальных поверхностей,
соответствующих значениям потенциала,
отстоящих друг от друга на одинаковый
(произвольно выбранный) сдвиг :

Рис.14.5
0+2
Левый рисунок соответствует однородному полю, а правый − центральному полю точечного источника.
