
- •Contents
- •Foreword
- •Preface
- •1 Materials in the Lab
- •2 Measurement
- •3 Joints, Stopcocks, and Glass Tubing
- •4 Cleaning Glassware
- •5 Compressed Gases
- •6 High and Low Temperature
- •7 Vacuum Systems
- •8 The Gas-Oxygen Torch
- •APPENDIX
- •Appendix A Preparing Drawings for a Technician
- •Index
- •Foreword
- •Preface
- •For the Second Edition
- •Please note:
- •1 Materials in the Lab
- •1.1 Glass
- •1.1.1 Introduction
- •1.1.2 Structural Properties of Glass
- •1.1.3 Phase Separation
- •1.1.4 Devitrification
- •1.1.5 Different Types of Glass Used in the Lab
- •1.1.6 Grading Glass and Graded Seals
- •1.1.7 Separating Glass by Type
- •1.1.9 Stress in Glass
- •1.1.11 Tempered Glass
- •1.1.13 Limiting Broken Glass in the Lab
- •1.1.14 Storing Glass
- •1.1.15 Marking Glass
- •1.1.16 Consumer's Guide to Purchasing Laboratory Glassware
- •1.2 Flexible Tubing
- •1.2.1 Introduction
- •1.2.2 Physical Properties of Flexible Tubing
- •1.3 Corks, Rubber Stoppers, and Enclosures
- •1.3.1 Corks
- •1.3.2 Rubber Stoppers
- •1.3.3 Preholed Stoppers
- •1.3.4 Inserting Glass Tubing into Stoppers
- •1.3.5 Removing Glass from Stoppers and Flexible Tubing
- •1.3.6 Film Enclosures
- •1.4 O-Rings
- •1.4.2 Chemical Resistance of O-Ring Material
- •1.4.3 O-Ring Sizes
- •2 Measurement
- •2.1 Measurement: The Basics
- •2.1.1 Uniformity, Reliability, and Accuracy
- •2.1.2 History of the Metric System
- •2.1.3 The Base Units
- •2.1.4 The Use of Prefixes in the Metric System
- •2.1.5 Measurement Rules
- •2.2 Length
- •2.2.1 The Ruler
- •2.2.2 How to Measure Length
- •2.2.3 The Caliper
- •2.2.4 The Micrometer
- •2.3 Volume
- •2.3.1 The Concepts of Volume Measurement
- •2.3.2 Background of Volume Standards
- •2.3.4 Materials of Volumetric Construction #1 Plastic
- •2.3.5 Materials of Volumetric Construction #2 Glass
- •2.3.6 Reading Volumetric Ware
- •2.3.7 General Practices of Volumetric Ware Use
- •2.3.8 Calibrations, Calibration, and Accuracy
- •2.3.9 Correcting Volumetric Readings
- •2.3.10 Volumetric Flasks
- •2.3.11 Graduated Cylinders
- •2.3.12 Pipettes
- •2.3.13 Burettes
- •2.3.14 Types of Burettes
- •2.3.15 Care and Use of Burettes
- •2.4 Weight and Mass
- •2.4.1 Tools for Weighing
- •2.4.2 Weight Versus Mass Versus Density
- •2.4.3 Air Buoyancy
- •2.4.5 Balance Location
- •2.4.6 Balance Reading
- •2.4.7 The Spring Balance
- •2.4.8 The Lever Arm Balance
- •2.4.9 Beam Balances
- •2.4.10 Analytical Balances
- •2.4.11 The Top-Loading Balance
- •2.4.12 Balance Verification
- •2.4.13 Calibration Weights
- •2.5 Temperature
- •2.5.1 TheNature of Temperature Measurement
- •2.5.2 The Physics of Temperature-Taking
- •2.5.3 Expansion-Based Thermometers
- •2.5.4 Linear Expansion Thermometers
- •2.5.5 Volumetric Expansion Thermometers
- •2.5.7 Thermometer Calibration
- •2.5.8 Thermometer Lag
- •2.5.9 Air Bubbles in Liquid Columns
- •2.5.10 Pressure Expansion Thermometers
- •2.5.11 Thermocouples
- •2.5.12 Resistance Thermometers
- •3.1 Joints and Connections
- •3.1.1 Standard Taper Joints
- •3.1.2 Ball-and-Socket Joints
- •3.1.3 The O-Ring Joint
- •3.1.4 Hybrids and Alternative Joints
- •3.1.5 Special Connectors
- •3.2 Stopcocks and Valves
- •3.2.1 Glass Stopcocks
- •3.2.2 Teflon Stopcocks
- •3.2.3 Rotary Valves
- •3.2.4 Stopcock Design Variations
- •3.3.1 Storage and Use of Stopcocks and Joints
- •3.3.2 Preparation for Use
- •3.3.3 Types of Greases
- •3.3.4 The Teflon Sleeve
- •3.3.5 Applying Grease to Stopcocks and Joints
- •3.3.6 Preventing Glass Stopcocks and Joints from Sticking or Breaking on a Working System
- •3.3.7 Unsticking Joints and Stopcocks
- •3.3.8 Leaking Stopcocks and Joints
- •3.3.9 What to Do About Leaks in Stopcocks and Joints
- •3.3.10 General Tips
- •3.4 Glass Tubing
- •3.4.1 The Basics of Glass Tubing
- •3.4.2 Calculating the Inside Diameter (I.D.)
- •3.4.3 Sample Volume Calculations
- •4 Cleaning Glassware
- •4.1 The Clean Laboratory
- •4.1.1 Basic Cleaning Concepts
- •4.1.2 Safety
- •4.1.3 Removing Stopcock Grease
- •4.1.4 Soap and Water
- •4.1.5 Ultrasonic Cleaners
- •4.1.6 Organic Solvents
- •4.1.7 The Base Bath
- •4.1.8 Acids and Oxidizers
- •4.1.9 Chromic Acid
- •4.1.10 Hydrofluoric Acid
- •4.1.11 Extra Cleaning Tips
- •4.1.12 Additional Cleaning Problems and Solutions
- •4.1.13 Last Resort Cleaning Solutions
- •5 Compressed Gases
- •5.1 Compressed GasTanks
- •5.1.1 Types of Gases
- •5.1.2 The Dangers of Compressed Gas
- •5.1.3 CGA Fittings
- •5.1.4 Safety Aspects of Compressed Gas Tanks
- •5.1.5 Safety Practices Using Compressed Gases
- •5.1.6 In Case of Emergency
- •5.1.7 Gas Compatibility with Various Materials
- •5.2 The Regulator
- •5.2.1 The Parts of the Regulator
- •5.2.2 House Air Pressure System
- •5.2.4 How to Use Regulators Safely
- •5.2.6 How to Purchase a Regulator
- •6 High and Low Temperature
- •6.1 High Temperature
- •6.1.1 TheDynamics of Heat in the Lab
- •6.1.2 General Safety Precautions
- •6.1.3 Open Flames
- •6.1.4 Steam
- •6.1.5 Thermal Radiation
- •6.1.6 Transfer of Energy
- •6.1.7 Hot Air Guns
- •6.1.8 Electrical Resistance Heating
- •6.1.9 Alternatives to Heat
- •6.2 Low Temperature
- •6.2.1 TheDynamics of Cold in the Lab
- •6.2.2 Room Temperature Tap Water (=20°C)
- •6.2.8 Safety with Slush Baths
- •6.2.9 Containment of Cold Materials
- •6.2.10 Liquid (Cryogenic) Gas Tanks
- •7 Vacuum Systems
- •7.1 How to Destroy a Vacuum System
- •7.2.1 Preface
- •7.2.2 How to Use a Vacuum System
- •7.2.4 Pressure, Vacuum, and Force
- •7.2.5 Gases, Vapors, and the Gas Laws
- •7.2.6 Vapor Pressure
- •7.2.7 How to Make (and Maintain) a Vacuum
- •7.2.8 Gas Flow
- •7.2.9 Throughput and Pumping Speed
- •7.3 Pumps
- •7.3.1 The Purpose of Pumps
- •7.3.2 The Aspirator
- •7.3.3 Types and Features of Mechanical Pumps
- •7.3.4 Connection, Use, Maintenance, and Safety
- •7.3.5 Condensable Vapors
- •7.3.6 Traps for Pumps
- •7.3.7 Mechanical Pump Oils
- •7.3.8 The Various Mechanical Pump Oils
- •7.3.9 Storing Mechanical Pumps
- •7.3.11 Ultra-High Vacuum Levels Without Ultra-High
- •7.3.12 Diffusion Pumps
- •7.3.13 Attaching a Diffusion Pump to a Vacuum System
- •7.3.14 How to Use a Diffusion Pump
- •7.3.15 Diffusion Pump Limitations
- •7.3.17 Diffusion Pump Maintenance
- •7.3.18 Toepler Pumps
- •7.4 Traps
- •7.4.1 The Purpose and Functions of Traps
- •7.4.2 Types of Traps
- •7.4.3 Proper Use of Cold Traps
- •7.4.4 Maintenance of Cold Traps
- •7.4.5 Separation Traps
- •7.4.6 Liquid Traps
- •7.5 Vacuum Gauges
- •7.5.2 The Mechanical Gauge Family
- •7.5.4 The Liquid Gauge Family
- •7.5.5 The Manometer
- •7.5.6 The McLeod Gauge
- •7.5.7 How to Read a McLeod Gauge
- •7.5.8 Bringing a McLeod Gauge to Vacuum Conditions
- •7.5.10 The Tipping McLeod Gauge
- •7.5.11 Condensable Vapors and the McLeod Gauge
- •7.5.12 Mercury Contamination from McLeod Gauges
- •7.5.13 Cleaning a McLeod Gauge
- •7.5.14 Thermocouple and Pirani Gauges
- •7.5.15 The Pirani Gauge
- •7.5.16 Cleaning Pirani Gauges
- •7.5.17 The Thermocouple Gauge
- •7.5.18 Cleaning Thermocouple Gauges
- •7.5.19 The lonization Gauge Family
- •7.5.20 The Hot-Cathode Ion Gauge
- •7.5.21 Cleaning Hot-Cathode Ion Gauges
- •7.5.24 The Momentum Transfer Gauge (MTG)
- •7.6 Leak Detection and Location
- •7.6.1 AllAbout Leaks
- •7.6.3 False Leaks
- •7.6.4 Real Leaks
- •7.6.5 Isolation to Find Leaks
- •7.6.6 Probe Gases and Liquids
- •7.6.7 The Tesla Coil
- •7.6.8 Soap Bubbles
- •7.6.9 Pirani or Thermocouple Gauges
- •7.6.10 Helium Leak Detection
- •7.6.11 Helium Leak Detection Techniques
- •7.6.13 Repairing Leaks
- •7.7 More Vacuum System Information
- •7.7.1 The Designs of Things
- •8 The Gas-Oxygen Torch
- •8.1.2 How to Light a Gas-Oxygen Torch
- •8.1.3 How to Prevent a Premix Torch from Popping
- •8.2.2 How to Tip-Off a Sample
- •8.2.3 How to Fire-Polish the End of a Glass Tube
- •8.2.4 Brazing and Silver Soldering
- •Appendix
- •A.2 Suggestions for Glassware Requests
- •B.1 Introduction
- •B.2 Polyolefins
- •B.3 Engineering Resins
- •B.4 Fluorocarbons
- •B.5 Chemical Resistance Chart
- •C.1 Chapter 1
- •C.4 Chapter 4
- •C.5 Chapter 5 & Chapter 6
- •C.6 Chapter 7
- •C.7 Chapter 8
- •D.1 Laboratory Safety
- •D.2 Chemical Safety
- •D.3 Chapter 1
- •D.4 Chapter 2
- •D.5 Chapter 3
- •D.6 Chapter 4
- •D.7 Chapter 5 and the Second Half of Chapter 6
- •D.8 Chapter 7
- •D.9 Chapter 8
- •Index
Traps 7.4 |
401 |
pound). Open Stopcock 9 (or 2 and 3) and allow the compound with the highest vapor pressure to freeze out.
9.After a sufficient amount of time has elapsed, open the stopcocks to the successive traps in similar succession.
10.Once the material in the holding trap has successfully passed into the other traps, close all stopcocks. Then, transfer the purified materials, one by one (from the lowest vapor pressure to the highest), back into containers such as those that originally held the mixed compound.
7.4.6Liquid Traps
The most efficient way to prevent the liquid from an oil or mercury pressure gauge or bubbler from spilling into the rest of your vacuum system is to place a liquid trap between the liquid container and the vacuum system. The liquid trap design is fairly straightforward (see Fig. 7.36), and the installation of one is strongly recommended.
The beauty of liquid traps is that once in place they require no further oversight, care, or maintenance. Once you have seen the damages caused by a manometer or a McLeod gauge that has "burped," you understand the value of liquid traps. However, the value of liquid traps can be overemphasized, and they should not be used as panaceas for clumsy vacuum work. They will not stop all the mercury (or other fluids) that are being battered around within a system, so do not depend on liquid traps to make up for carelessness.
To |
|
>- 11 |
|
|
~~ system |
|
|
|
|
|
|
|
|
|
Constricted to |
|
|
|
|
restrict the |
\ . |
( |
) |
|
fluid flow |
|
NX./? |
V |
A hole |
|
|
|
^ |
|
To vacuum |
— _ |
|
|
allowing fluid |
liquid column |
|
|
|
return |
In this trap, fluids travel the easier route of the side arm (rather than the constricted center tube) and splash into the pear-shaped flask. From there they pour back into the container from where they originally came.
Fig. 7.36 Two liquid trap designs.
In this design, fluids are splashed against the inside wall where they can flow back into the tube from the hole on the side of the lower tube.