Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Gary S. Coyne - A Practical Guide to Materials, Equipment, and Technique.pdf
Скачиваний:
142
Добавлен:
15.08.2013
Размер:
8.47 Mб
Скачать

354

Vacuum Systems

Between 1/2" and 3/4" deflection

Fig. 7.18 Acceptable deflection of the pump belt is between V2"and 3/4".

pump one extra time before refilling the pump for use. After changing the pump oil, be sure to wipe off any oil that may have spilled on the pump, especially the motor. Oil and dirt can prevent the proper dissipation of heat, which could damage air-cooled (or fan-cooled) systems.

Any oil seen around the drive shaft is an indication that a drive shaft seal may need replacement. Unusual noise and/or heat may indicate bearings that may need to be changed or a failure of the internal lubrication system. Typically, the first section of a pump that will show wear from abrasive paniculate matter that may have entered will be the discharge valves and will be indicated with drops in pressure.

If the motor or pump mechanism requires lubrication, typically once a year is sufficient. To lubricate more often than that causes the excess grease to be forced out on the inside of the motor housing, potentially landing on the windings of the motor. This can prematurely destroy the motor.

If you have to change the belt, be sure to align the pulleys both parallel and on the same plane (see Fig. 7.17). After the belt is on, check its tightness by firmly placing your finger on the center of the belt. The deflection should be between l/{ to V{ (see Fig. 7.18). If the belt is too loose, it may slip on the pulleys; this causes friction and heat, leading to premature failure. On the other hand, if the belt is too tight, it may break, even within a week of constant use. After a day or two of operations use, recheck the tension because it is likely to have loosened.

7.3.5 Condensable Vapors

A working pump is constantly trapping condensable vapors within the pump oil. This trapping is caused both by the pump's churning action, which physically mixes the oil and gases, and by the high pressures within the pump during the compression stage of the pump cycle. During the compression stage, the gases and vapors must be brought to a pressure greater than atmospheric before they can be expelled into the atmosphere. Now, by definition, condensable vapors in a vacuum are in a gaseous state. As they are compressed within the pump, some of them may condense out and can mix into the mechanical pump oil. Then, as the veins of the pump continue past the exhaust point of the pump and back to the vacuum side, the condensed vapors can revolatilize.

Pumps 7.3

355

The revolatilization of condensable vapors will decreases vacuum potential by replenishing the vapors in the system you were just trying to remove. This can create an artificially high maximum limit on the pump's potential vacuum. In addition to the backstreaming of vapors, the pump itself is affected when condensable vapors contaminate the pump's oil. Not only will this decrease the vapor pressure of the pump oil, but the condensed vapors can cause a reduction of lubrication and sealing properties of the oil and lead to an eventual corrosion of the pump's internal parts. Other condensed liquids (such as hydrocarbons) can mix, emulsify, and/or break down the pump oil. They can also directly destroy a pump by chemical attack, or indirectly, by poor pump performance, they can cause extra wear and tear on the pump parts.

There is no one good way to prevent condensable vapors from affecting a mechanical pump. There are, however, two directions that one can take in dealing with the problem: One is to limit them from getting to the pump, the other is to prevent them from affecting the pump once they are present. Neither is the best approach, and usually it takes combinations of the two to deal effectively with the problem. An alternative approach is to constantly change the pump oil. This solution however, is neither costnor time-effective.

To prevent (or limit) condensable vapors from getting to a pump, traps [either of chilled or chemical design (see Sec. 7.4 on traps and foreline traps)], are used. Depending on the type of trap used, there are opportunities for vapors to pass on to the mechanical pump. Thus, one cannot depend fully on traps of any kind, and one must also deal with vapors at the pump itself.

To prevent (or limit) condensable vapors that reach a pump from affecting the mechanical pump oil, a gas ballast (also called a vented exhaust) is used. The gas ballast allows a small bit of atmosphere (up to 10%) into the pump during the compression stage so that the gas from the system is only part of the gas in the pump at the time of greatest compression. Thus, at the time of compression, the total percentage of condensable vapor within the pump is much less than there would be otherwise. Because the gas prior to being expelled is at a lower pressure, less of the vapor can be compressed into a liquid. Then, as the veins sweep into the vacuum side of the pump, no condensed vapor can expand back into a vapor.

Ballasting decreases the potential vacuum a pump could normally produce (about one decade of performance capability*). However, it dramatically improves its performance over the long run in the presence of condensable vapors. Plus, it helps to protect pump oils from contamination, which decreases pump breakdown possibilities and increases the longevity of the pump oils. Incidentally, running a pump with a ballast causes the pump to run a bit hotter than it otherwise would, which decreases the potential gas-carrying ability of the oil.

*If you can obtain 10"3 torr without a ballast, you may only be able to obtain 10'2 torr with a ballast. If you are not obtaining expected performance and you have a ballast, you may want to check if the ballast was inadvertently left open.

356

Vacuum Systems

For maximum efficiency, a gas ballast should be open when first pumping on a vacuum system, or when pumping a system that has (or is creating) condensable vapors. Once sufficient vacuum has been achieved and the majority of condensable vapors have been removed from a system, the gas ballast can be closed, although it does not hurt (beyond ultimate pump performance) to leave a ballast open all the time.

Although gas ballasts can be found on both singleand double-vane pumps, as well as piston design pumps, they are more likely to be found on double-stage pumps than on single-stage pumps. It is interesting to note that a vane pump tends to run noisier with the gas ballast open, whereas a piston pump tends to run quieter with the gas ballast open.

When work is over, there is a tendency to turn everything off. Normally this approach is proper. However, it is better to leave a mechanical pump on (ideally pumping against a dry nitrogen purge) after regular use. The purge should be held at about 300(x for as long as a day to help "flush out" any condensate from the pump oil. This extended pumping will not help pump oil already broken down, but it will help decrease any more pump oil from further destruction by expelling any remaining contaminating material. It also helps to remove water vapor from the pump oil. When letting your pump run for such an extended period of time, always let the pump pull against a load. In other words, never let a pump run with the inlet open to atmospheric pressure because the pump oil will froth and lose its protective characteristics—which can ruin the pump.

You can make a dry nitrogen leak fairly easily. Take a copper tube with fittings to go between a compressed nitrogen tank and the vacuum system, and smash about two inches of the tube flat with a hammer. You can check the quality of your "leak" by attaching this tube to the nitrogen tank, and open the main valve. Place the other end in a container of water and observe the gas bubble formation as you increase the delivery pressure. Sufficient pressure to produce a bubble every 10 seconds or so will provide an adequate leak for a good flushing. Certainly not high-tech, but it seems to work quite well. This can be used not only to help flush out condensable gases from a mechanical pump, but also to flush out a vacuum line of contaminants (provided that the vapor pressure of the contaminants can be achieved with the extra pressure of the dry nitrogen leak purging into the system).

There is an alternate approach to preventing condensable vapors from entering mechanical pump oils—that is, maintaining the pump at relatively high temperatures. The high heat prevents the vapors from condensing within the pump despite the high pressure. However, due to the inherent dangers of this type of pump, as well as the problem that pump oils begin to deteriorate after being maintained at high temperatures, this approach is seldom used.

7.3.6 Traps for Pumps

All pumps should be protected from materials within the system, the system should be protected from all pump oils, and a diffusion pump (if any) should be

Pumps 7.3

357

protected from mechanical pump oils in the foreline.* These protections can be achieved by using traps. More information on traps is presented in Sec. 7.4, but the following information is important for general operation.

Any water or hydrocarbon solvents left from previous operations should be removed from traps before beginning any new vacuum operations. Otherwise, any materials in a trap when first beginning operation will be drawn directly into the pumps, which is what the traps are trying to prevent. Having no material in the traps to begin with removes this possibility.

A buildup of water or hydrocarbon solvents during operation can decrease, or cut off, throughput of gas through a trap. If this situation occurs, close off the trap from the rest of the vacuum line and pump. Once isolated, vent the trap to the atmosphere^ let the trap come to room temperature, remove the lower section, and empty the trap. In some cases it may be necessary to remove the trap before it has thawed and place it within a fume hood to defrost. It is a good idea to have some extra lower sections of cold traps to exchange with one that is being cleaned to limit your downtime. If you expect to remove frozen trap bottoms often on a glass system, it may facilitate operations if O-ring joints are installed on the system rather than standard taper joints because O-ring joints are easy to separate, even if the trap is cold (see page 398).

Cold traps must be used if mercury is used in your system (such as manometers, diffusion pumps, bubblers, or McLeod gauges) and if your mechanical pump has cast aluminum parts. Mercury will amalgamate with aluminum and destroy a pump. Even if your mechanical pump does not have aluminum parts, the mercury may form a reservoir in the bottom of the mechanical pump, which may cause a noticeable decrease in pumping speed and effectiveness. Aside from a cold trap between the McLeod gauge and the system, place a film of low vapor pressure oil in the McLeod gauge storage bulb. This oil will limit the amount of mercury vapor entering the system that makes its way to the mechanical pump.17 In addition, an oil layer should be placed on the mercury surface in bubblers and other mercuryfilled components.

When first starting up a vacuum system, let the pumps evacuate the system (if starting up the system for the first time) or the traps (if they have been vented to the atmosphere) for a few minutes* before setting the traps into liquid nitrogen. Otherwise you are likely to condense oxygen in the traps and create a potentially dangerous situation when the pumps are turned off (see Sec. 7.4.3).

*The foreline is the section of the vacuum system between the high-vacuum pump (i.e., diffusion pump) and the fore pump (i.e., mechanical pump).

+ Traps should always have stopcocks or valves on both sides and should also have a third stopcock or valve to vent the trap to the atmosphere to allow removal of the trap. This allows the trap to be disassembled without exposing the system or the pump to the atmosphere.

*When a pump is working against a no-load situation, it is often louder than when it is pumping against a vacuum. You can use the volume change as a guide as to when it is safe to begin using liquid nitrogen.

Соседние файлы в предмете Химия