Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
госы_ответы_биоэкология.doc
Скачиваний:
242
Добавлен:
19.05.2015
Размер:
3.33 Mб
Скачать

64. Изменчивость как фактор эволюции. Фенотипическая изменчивость и ее составляющие. Классификация явлений изменчивости.

В основе изменчивости как всеобщего явления живой природы лежит конвариантная редупликация. Именно в процессе матричного копирования ДНК и РНК происходят ошибки последовательности расположения нуклеотидов, связанные с заменой одного нуклеотида другим или сдвигом рамок считывания. Эти процессы лежат в основе изменчивости на молекулярном уровне. Общие причины генетической изменчивости чрезвычайно разнообразны.

Во времена Ч. Дарвина всю наблюдаемую изменчивость делили на наследственную и ненаследственную. В настоящее время такое разделение правильно лишь в общих чертах. Ненаследственных признаков нет и быть не может: все признаки и свойства организма в той или иной степени наследственно обусловлены. В процессе размножения от поколения к поколению передаются не признаки, а код наследственной информации, определяющий лишь возможность развития будущих признаков в каком то диапазоне. Наследуется не признак, а норма реакции развивающейся особи на действие внешней среды. Наследственная изменчивость обусловлена возникновением разных типов мутаций и их комбинаций в последующих скрещиваниях. Модификационная (фенотипическая) изменчивость — изменения в организме, связанные с изменением фенотипа вследствие влияния окружающей среды и носящие, в большинстве случаев, адаптивный характер. Генотип при этом не изменяется. Вся наблюдаемая изменчивость какого-либо признака или свойства в пределах нормы реакции называется фенотипической. Фенотип — совокупность всех внутренних и внешних структур и функций данной особи, развивающаяся как один из возможных вариантов реализации нормы реакции в определенных условиях. В общей фенотипической изменчивости популяции могут быть выделены две доли: генотипическая, или наследственная, и паратипическая, вызванная внешними условиями. Доля общей изменчивости, которая определяется генотипическими различиями между особями по данному признаку, характеризует наследуемость этого признака.

65.Жизненный цикл клетки. Стадии митоза, их продолжительность и характеристика. Судьба клеточных органелл в процессе деления клетки.

Жизненный цикл— это время существования клетки от момента ее образования путем деления материнской клетки до собственного деления или естественной гибели. Деление всех эукариотических клеток связано с конденсацией удвоенных (реплицированных) хромосом, которые приобретают вид плотных нитчатых структур. Эти нитчатые хромосомы переносятся в дочерние клетки специальной структурой - веретеном деления. Такой тип деления эукариотических клеток - митоз (от греч. mitos - нити), или кариокинез, или непрямое деление - является единственным полноценным способом увеличения числа клеток. Прямое деление клеток, или амитоз, достоверно описано только при делении полиплоидых макронуклеусов инфузорий, их микронуклеусы делятся только митотическим путем.

Клеточный цикл эукариот состоит из двух периодов:

Период клеточного роста, называемый «интерфаза», во время которого идет синтез ДНК и белков и осуществляется подготовка к делению клетки.

Периода клеточного деления, называемый «фаза М» (от слова mitosis — митоз).

Периоды интерфазы:

1) пресинтетическая (G1). Идет сразу после деления клетки. Синтеза ДНК еще не происходит. Клетка активно растет в размерах, запасает вещества, необходимые для деления: белки (гистоны, структурные белки, ферменты), РНК, молекулы АТФ. Происходит деление митохондрий и хлоропластов (т. е. структур, способных к ауторепродукции). Восстанавливаются черты организации интерфазной клетки после предшествующего деления;

2) синтетическая (S). Происходит удвоение генетического материала путем репликации ДНК. Она происходит полуконсервативным способом, когда двойная спираль молекулы ДНК расходится на две цепи и на каждой из них синтезируется комплементарная цепочка. В итоге образуются две идентичные двойные спирали ДНК, каждая из которых состоит из одной новой и старой цепи ДНК. Количество наследственного материала удваивается. Кроме этого, продолжается синтез РНК и белков. Также репликации подвергается небольшая часть митохонд-риальной ДНК (основная же ее часть реплицируется в G2 период);

3) постсинтетическая (G2). ДНК уже не синтезируется, но происходит исправление недочетов, допущенных при синтезе ее в S период (репарация). Также накапливаются энергия и питательные вещества, продолжается синтез РНК и белков (преимущественно ядерных).

S и G2 непосредственно связаны с митозом, поэтому их иногда выделяют в отдельный период – препрофазу.

Процесс митотического деления клеток принято подразделять на несколько основных фаз: профаза, прометафаза, метафаза, анафаза, телофаза. Границы между этими фазами установить точно очень трудно, потому что сам митоз представляет собой непрерывный процесс и смена фаз происходит очень постепенно: одна их них незаметно переходит в другую. Единственная фаза, которая имеет реальное начало, это анафаза — начало движения хромосом к полюсам. Длительность отдельных фаз митоза различна, наиболее короткая по времени анафаза.

Профаза. Уже в конце G2-периода в клетке начинают происходить значительные перестройки. Точно определить, когда наступает профаза невозможно. Лучшим критерием для начала этой фазы митоза может служить появление в ядрах нитчатых структур – митотических хромосом. Этому событию предшествует повышение активности фосфорилаз, модифицирующих гистоны, в первую очередь, гистон H1. В профазе сестринские хроматиды связаны друг с другом бок о бок с помощью белков-когезинов, которые образуют эти связи еще в S-периоде, во время удвоения хромосом. К поздней профазе связь между сестринскими хроматидами сохраняется только в зоне кинетохоров. В профазных хромосомах уже можно наблюдать зрелые кинетохоры. которые не имеют никаких связей с микротрубочками. Конденсация хромосом в профазном ядре совпадает с резким уменьшением транскрипционной активности полностью исчезает к середине профазы. В PHК с конденсацией хроматина происходит инактивация и ядрышвых генов. При этом отдельные фибриллярные центры сливаются так что превращаются в ядрышкобразующие участки хромосом, в ядрышковые организаторы. Присходит фосфорилирование белков ядерной оболочки, которая распадается. Активация клеточных центров. В начале разбираются микротрубочки цитоплазмы и начинается рост микротрубочек вокруг удвоившихся диплосом. Микротрубочки в этой фазе еще менее стабильны. Центросомы – будущие полюсы веретена деления начинают расходится. Дезорганизация ЭПР (распадается на мелкие вакуоли) и аппарата Гольджи (разделяется на отдельные диктиосомы).

Прометафаза. После разрушения ядерной оболочки митотические хромосомы без особого порядка лежат в зоне бывшего ядра. В промегафазе начинаются их движение и перемещение с участием микротрубочек, которые в конечном итоге приводят к образованию экваториальной хромосомной «пластинки», к упорядоченному расположению хромосом в центральной части веретена уже в метафазе. В прометафазе наблюдается постоянное движение хромосом, или метакинез, при котором они то приближаются к полюсам, то уходят от них к центру веретена, пока не займут среднее положение, характерное для метафазы (конгрессия хромосом).

Метафаза. Не смотря на стабилизацию пучков микротрубочек продолжается их постоянное обновление за счет сборки и разборки тубулинов. Хромосомы располагаются так, что их кинетохоры обращены к противоположным полюсам. К концу метафазы завершается процесс обособления друг от друга сестринских хроматид. Их плечи параллельны, между ними видна щель. Центромера – последнее место, где контакт между хроматидами сохряняется вплоть до конца метафазы.

Анафаза начинается с разъединения всех хромосом в центромерных участках. В это время происходит одновременная деградация центромерных когезинов, которые связывали до этого времени сестринские хроматиды. Такое одновременное отделение хроматид позволяет начать их синхронное расхождение. Хромосомы все вдруг теряют центромерные связки и синхронно начинают удаляться друг от друга по направлению к противоположным полякам веретена. Скорость движения хромосом равномерная. Анафаза занимает несколько процентов от всего времени митоза, но за это время происходит целый ряд событий. Главными из них являются сегрегация двух идентичных наборов хромосом и транспорт их в противоположные концы клетки.

При движении хромосомы меняют свою ориентацию и часто принимают V-образную форму. Вершина их направлена в сторону полюсов деления, а плечи как бы откинуты к центру веретена.

Расхождение хромосом слагается из двух процессов: 1 - расхождение хромосом за счет укорачивания кинетохорных пучков микротрубочек: 2 - расхождение хромосом вместе с полюсами за счет удлинения межполюсных микротрубочек. Первый из этих процессов носит название «анафаза А». второй — «анафаза В». Их последовательность и вклад могут различаться у разных объектов. У млекопитающих практически одновременно. В растительных клетках стадии В нет.

Телофаза начинается с остановки хромосом (ранняя телофаза - поздняя анафаза) и кончается началом реконструкции нового интерфазного ядра (ранний G1-период) и разделением исходной клетки на две дочерние (цитокинез). В ранней телофазе хромосомы, не меняя своей ориентации (центромерные участки - к полюсу, теломерные - к центру веретена), начинают деконденсироваться и увеличиваться в объеме. В местах их контактов с мембранными пузырьками цитоплазмы начинает строиться новая ядерная оболочка, которая раньше всего образуется на латеральных поверхностях хромосом и позже - в центромерных и теломерных участках. После замыкания ядерной оболочки начинается формирование новых ядрышек. Клетка переходит в G1-период новой интерфазы. В телофазе начинается и заканчивается процесс разрушения митотического аппарата – разборка микротрубочек. Он идет от полюсов к экватору бывшей клетки: именно в средней части веретена микротрубочки сохраняются дольше всего (остаточное тельце). Одно из главных событий телофазы - разделение клеточного тела. т.е. цитотомия, или цитокинез. У растений деление клетки происходит путем внутриклеточного образования клеточной перегородки, а у клеток животных - путем перетяжки, впячивания плазматической мембраны внутрь клетки.

После цитотомии две дочерние клетки переходят стадию G1 клеточного периода. Возобновляются цитоплазматические синтезы, диктиосомы АГ снова конденсируются в околоядерной зоне. От центросомы начинается отрастание микротрубочек и восстановление интерфазного цитоскелета.