- •About This Manual
- •Additional Resources
- •Manual Contents
- •Conventions
- •Typographical
- •Online Document
- •Using Foundation Express with VHDL
- •Hardware Description Languages
- •Typical Uses for HDLs
- •Advantages of HDLs
- •About VHDL
- •Foundation Express Design Process
- •Using Foundation Express to Compile a VHDL Design
- •Design Methodology
- •Design Descriptions
- •Entities
- •Entity Generic Specifications
- •Entity Port Specifications
- •Architecture
- •Declarations
- •Components
- •Concurrent Statements
- •Constant Declarations
- •Processes
- •Signal Declarations
- •Subprograms
- •Type Declarations
- •Examples of Architectures for NAND2 Entity
- •Configurations
- •Packages
- •Using a Package
- •Package Structure
- •Package Declarations
- •Package Body
- •Resolution Functions
- •Data Types
- •Type Overview
- •Enumeration Types
- •Enumeration Overloading
- •Enumeration Encoding
- •Enumeration Encoding Values
- •Integer Types
- •Array Types
- •Constrained Array
- •Unconstrained Array
- •Array Attributes
- •Record Types
- •Record Aggregates
- •Predefined VHDL Data Types
- •Data Type BOOLEAN
- •Data Type BIT
- •Data Type CHARACTER
- •Data Type INTEGER
- •Data Type NATURAL
- •Data Type POSITIVE
- •Data Type STRING
- •Data Type BIT_VECTOR
- •Unsupported Data Types
- •Physical Types
- •Floating-Point Types
- •Access Types
- •File Types
- •Express Data Types
- •Subtypes
- •Expressions
- •Overview
- •Operators
- •Logical Operators
- •Relational Operators
- •Adding Operators
- •Unary (Signed) Operators
- •Multiplying Operators
- •Miscellaneous Arithmetic Operators
- •Operands
- •Operand Bit-Width
- •Computable Operands
- •Aggregates
- •Attributes
- •Expressions
- •Function Calls
- •Identifiers
- •Indexed Names
- •Literals
- •Numeric Literals
- •Character Literals
- •Enumeration Literals
- •String Literals
- •Qualified Expressions
- •Records and Fields
- •Slice Names
- •Limitations on Null Slices
- •Limitations on Noncomputable Slices
- •Type Conversions
- •Sequential Statements
- •Assignment Statements and Targets
- •Simple Name Targets
- •Indexed Name Targets
- •Slice Targets
- •Field Targets
- •Aggregate Targets
- •Variable Assignment Statements
- •Signal Assignment Statements
- •Variable Assignment
- •Signal Assignment
- •if Statements
- •Evaluating Conditions
- •Using the if Statement to Infer Registers and Latches
- •case Statements
- •Using Different Expression Types
- •Invalid case Statements
- •loop Statements
- •Basic loop Statement
- •while...loop Statements
- •for...loop Statements
- •Steps in the Execution of a for...loop Statement
- •for...loop Statements and Arrays
- •next Statements
- •exit Statements
- •Subprograms
- •Subprogram Always a Combinatorial Circuit
- •Subprogram Declaration and Body
- •Subprogram Calls
- •Procedure Calls
- •Function Calls
- •return Statements
- •Procedures and Functions as Design Components
- •Example with Component Implication Directives
- •Example without Component Implication Directives
- •wait Statements
- •Inferring Synchronous Logic
- •Combinatorial Versus Sequential Processes
- •null Statements
- •Concurrent Statements
- •Overview
- •process Statements
- •Combinatorial Process Example
- •Sequential Process Example
- •Driving Signals
- •block Statements
- •Nested Blocks
- •Guarded Blocks
- •Concurrent Versions of Sequential Statements
- •Concurrent Procedure Calls
- •Concurrent Signal Assignments
- •Simple Concurrent Signal Assignments
- •Conditional Signal Assignments
- •Selected Signal Assignments
- •Component Instantiation Statements
- •Direct Instantiation
- •generate Statements
- •for...generate Statements
- •Steps in the Execution of a for...generate Statement
- •Common Usage of a for...generate Statement
- •if...generate Statements
- •Register and Three-State Inference
- •Register Inference
- •The Inference Report
- •Latch Inference Warnings
- •Controlling Register Inference
- •Inferring Latches
- •Inferring Set/Reset (SR) Latches
- •Inferring D Latches
- •Inferring Master-Slave Latches
- •Inferring Flip-Flops
- •Inferring D Flip-Flops
- •Inferring JK Flip-Flops
- •Inferring Toggle Flip-Flops
- •Getting the Best Results
- •Understanding Limitations of Register Inference
- •Three-State Inference
- •Reporting Three-State Inference
- •Controlling Three-State Inference
- •Inferring Three-State Drivers
- •Inferring a Simple Three-State Driver
- •Three-State Driver with Registered Enable
- •Three-State Driver Without Registered Enable
- •Writing Circuit Descriptions
- •How Statements Are Mapped to Logic
- •Design Structure
- •Adding Structure
- •Using Variables and Signals
- •Using Parentheses
- •Using Design Knowledge
- •Optimizing Arithmetic Expressions
- •Arranging Expression Trees for Minimum Delay
- •Sharing Common Subexpressions
- •Changing an Operator Bit-Width
- •Using State Information
- •Propagating Constants
- •Sharing Complex Operators
- •Asynchronous Designs
- •Don’t Care Inference
- •Using Don’t Care Default Values
- •Differences Between Simulation and Synthesis
- •Synthesis Issues
- •Feedback Paths and Latches
- •Fully Specified Variables
- •Asynchronous Behavior
- •Understanding Superset Issues and Error Checking
- •Foundation Express Directives
- •Notation for Foundation Express Directives
- •Foundation Express Directives
- •Translation Stop and Start Pragma Directives
- •synthesis_off and synthesis_on Directives
- •Resolution Function Directives
- •Component Implication Directives
- •Foundation Express Packages
- •std_logic_1164 Package
- •std_logic_arith Package
- •Using the Package
- •Modifying the Package
- •Data Types
- •UNSIGNED
- •SIGNED
- •Conversion Functions
- •Arithmetic Functions
- •Example 10-1: Binary Arithmetic Functions
- •Example 10-2: Unary Arithmetic Functions
- •Comparison Functions
- •Example 10-3: Ordering Functions
- •Example 10-4: Equality Functions
- •Shift Functions
- •ENUM_ENCODING Attribute
- •pragma built_in
- •Type Conversion
- •numeric_std Package
- •Understanding the Limitations of numeric_std package
- •Using the Package
- •Data Types
- •Conversion Functions
- •Resize Function
- •Arithmetic Functions
- •Comparison Functions
- •Defining Logical Operators Functions
- •Shift Functions
- •Rotate Functions
- •Shift and Rotate Operators
- •std_logic_misc Package
- •ATTRIBUTES Package
- •VHDL Constructs
- •VHDL Construct Support
- •Design Units
- •Data Types
- •Declarations
- •Specifications
- •Names
- •Identifiers and Extended Identifiers
- •Specifics of Identifiers
- •Specifics of Extended Identifiers
- •Operators
- •Shift and Rotate Operators
- •xnor Operator
- •Operands and Expressions
- •Sequential Statements
- •Concurrent Statements
- •Predefined Language Environment
- •VHDL Reserved Words
- •Examples
- •Moore Machine
- •Mealy Machine
- •Read-Only Memory
- •Waveform Generator
- •Smart Waveform Generator
- •Definable-Width Adder-Subtracter
- •Count Zeros—Combinatorial Version
- •Count Zeros—Sequential Version
- •Soft Drink Machine—State Machine Version
- •Soft Drink Machine—Count Nickels Version
- •Carry-Lookahead Adder
- •Carry Value Computations
- •Implementation
- •Serial-to-Parallel Converter—Counting Bits
- •Input Format
- •Implementation Details
- •Serial-to-Parallel Converter—Shifting Bits
- •Programmable Logic Arrays
Sequential Statements
must be computable (see the “Expressions” chapter) and must lie within the bounds of the array. The direction must match the identifier array type’s direction, either to or downto.
The assigned expression must contain the array’s element type.
In the following example, array variables A and B are assigned the same value.
variable A, B: BIT_VECTOR(1 to 4);
-- Target |
Expression; |
|
A(1 to 2) := “11"; |
-- Assigns “11" to the first two elements of array A |
|
A(3 to 4) := “00"; |
-- Assigns “00" to the last two elements of array A |
|
B(1 to |
4) := “1100";-- Assigns “1100" to array B |
|
Field Targets
The syntax for a field target follows.
identifier.field_name
identifier is the name of a record type signal or variable. field_name is the name of a field in that record type, preceded by a period (.). The assigned expression must contain the identified field’s type. A field can be any type, including an array, record, or aggregate type.
The following example assigns values to the fields of record variables A and B.
type REC is record
NUM_FIELD: INTEGER range -16 to 15; ARRAY_FIELD: BIT_VECTOR(3 to 0);
end record;
variable A, B: REC;
-- Target |
Expression; |
A.NUM_FIELD |
:= -12; |
--Assigns -12 to record A’s field NUM_FIELD A.ARRAY_FIELD := “0011";
--Assigns “0011" to record A’s field ARRAY_FIELD A.ARRAY_FIELD(3) := ’1’;
--Assigns ’1’ to the most significant bit of
--record A’s field ARRAY_FIELD
B := A;
--Assigns values of record A to corresponding fields of B
VHDL Reference Guide |
5-5 |
VHDL Reference Guide
For more information, see the “Record Types” section of the “Data Types” chapter.
Aggregate Targets
The syntax for an assignment to an aggregate target follows.
([choice => ] identifier
{,[choice =>] identifier}) := array_expression; -- Variable assignment
([choice =>] identifier
{,[choice =>] identifier}) <= array_expression; -- Signal assignment
aggregate assignment assigns the array_expression element values to one or more variable or signal identifiers.
Each (optional) choice is an index expression selecting an element or a slice of the assigned array_expression. Each identifier must have the element type of array_expression element type. An identifier can be an array type.
You can assign array element values to the identifiers by position or by name. In positional notation, the choice => construct is not used. Identifiers are assigned array element values in order, from the left array bound to the right array bound.
In named notation, the choice => construct identifies specific elements of the assigned array. A choice index expression indicates a single element, such as 3. The type of identifier must match the assigned expression’s element type.
Positional and named notation can be mixed, but positional associations must appear before named associations, as in the following example.
signal A, B, C, D: BIT; signal S: BIT_VECTOR(1 to 4);
. . .
variable E, F: BIT;
variable G: BIT_VECTOR(1 to 2); variable H: BIT_VECTOR(1 to 4);
-- Positional notation |
|
|
|
|
S |
<= (’0’, ’1’, ’0’, ’0’); |
|||
(A, B, C, D) <= S; |
-- |
Assigns |
’0’ to A |
|
|
|
-- |
Assigns |
’1’ to B |
5-6 |
Xilinx Development System |
