- •Оглавление
- •Глава 1. Алгебраические системы 17
- •Глава 2. Элементы комбинаторики 88
- •Глава 3. Основы теории графов 101
- •Глава 4. Основы математической логики 169
- •4.1.1.4. Эквивалентные преобразования формул 179
- •4.1.4. Выполнить подстановку: 247
- •Глава 5. Основы теории алгоритмов 252
- •Глава 6. Конечные автоматы 289
- •Введение
- •Глава 1. Алгебраические системы
- •1.1 Множества
- •1.1.1. Четкие множества
- •1.1.2. Нечеткие множества
- •1.2. Соответствия, отображения и функции
- •1.2.1. Четкие отображения и функции
- •1.2.2. Нечеткие отображения
- •1.3. Отношение
- •1.3.1. Четкие отношения
- •1.3.2. Нечеткое отношение
- •1.4. Элементы общей алгебры
- •1.5. Булева алгебра
- •1.5.1. Булевы операции
- •1.5.2. Законы булевой алгебры
- •1.5.3. Формула булевой функции
- •1.5.4. Описание булевой функции
- •1.5.5. Суперпозиция булевых функций
- •1.5.6. Свойства булевых функций
- •1.5.6.1. Самодвойственные булевы функции
- •1.5.6.2. Монотонные булевы функции
- •1.5.6.3. Линейные булевы функции
- •1.5.6.4. Функции, сохраняющие “0”
- •1.5.6.5. Функции, сохраняющие “1”
- •1.5.6.6. Функционально полные системы
- •1.5.7. Разложение булевых функции
- •1.5.7.1. Днф булевой функции
- •1.5.7.2. Кнф булевой функции
- •Алгоритм преобразования формулы к скнф:
- •1.5.8. Минимизация булевых функций.
- •1.5.8.1.Минимизация днф булевой функции
- •1.5.8.2. Минимизация кнф булевой функции
- •1.6. Алгебра четких множеств
- •1.6.1. Операции над множествами
- •1.6.2. Законы алгебры множеств
- •1.6.3. Эквивалентные преобразования формул
- •1.6.4. Композиция отображений и отношений
- •1.6.5. Поиск неизвестного множества
- •1.7. Алгебра нечетких множеств
- •1.7.1. Операции над нечеткими множествами
- •1.7.2. Композиция нечетких отображений
- •1.7.3. Композиция нечетких отношений
- •1.7.4. Свойства нечетких отношений
- •Вопросы и задачи
- •Глава 2. Элементы комбинаторики
- •2.1. Размещение из n элементов по k
- •2.2. Перестановка элементов
- •2.3 Сочетание из n элементов по k
- •2.4. Разбиение множества
- •2. 5 Правила комбинаторики
- •Вопросы и задачи
- •Глава 3. Основы теории графов
- •3.1. Граф и его характеристики
- •3.2. Описание графа
- •3. 3. Числа графа
- •3.4. Операции над графами
- •3.4.1. Унарные операции
- •3.4.1.1 Поиск дополнительного графа
- •3.4.1.2. Введение и удаление вершин графа
- •3.4.1.3. Стягивание вершин графа
- •3.4.1.4. Введение и удаление ребер графа
- •3.4.1.5. Поиск плотности и неплотности графа
- •3.4.1.6. Поиск числа компонент связности графа
- •3.4.1.7. Поиск устойчивости графа
- •3.4.1.8. Поиск цикломатического числа графа
- •3.4.1.9. Поиск хроматического числа графа
- •3.4.2. Бинарные операции
- •3.4.2.1. Объединение графов
- •3.4.2.2. Пересечение графов
- •3.4.2.3. Композиция графов
- •3.4.2.4. Соединение графов
- •3.4.2.5. Прямое произведение графов
- •3.4.2.6. Изоморфизм графов
- •3.5. Некоторые алгоритмы на графах
- •3.5.1. Построение покрывающего остова
- •3.5.2. Построение остова минимального веса
- •3.5.3. Поиск кратчайших путей в сети.
- •3.5.4. Поиск максимального потока в сети
- •3.5.5. Метод критического пути в управлении
- •3.6. Нечеткие графы
- •Вопросы и задачи
- •Глава 4. Основы математической логики
- •4.1. Логика высказываний
- •4.1.1. Алгебра высказываний
- •4.1.1.1. Логические операции
- •4.1.1.2. Правила записи сложных формул.
- •4.1.1.3. Законы алгебры высказываний
- •4.1.1.4. Эквивалентные преобразования формул
- •4.1.1.5. Нормальные формы формул
- •4.1.2. Исчисление высказываний
- •4.1.2.1. Интерпретация формул
- •4.1.2.2. Аксиомы и правила введения и удаления логических связок
- •4.1.2.3. Метод дедуктивного вывода
- •4.1.2.4. Принцип резолюции
- •4. 2. Логика предикатов
- •4.2.1. Алгебра предикатов
- •4.2.1.1. Законы алгебры предикатов
- •4.2.1.2. Предваренная нормальная форма формулы
- •4.2.1.3 Сколемовская стандартная форма формулы
- •4. 2. 2. Исчисление предикатов
- •4.2.2.1. Правила подстановки
- •4.2.2.2. Правила введения и удаления кванторов
- •4.2.2.3. Правила заключения
- •4.2.2.4. Метод дедуктивного вывода
- •4.2.2.5. Принцип резолюции
- •4.2.2.6. Логическое программирование
- •4.3. Логика реляционная
- •4.3.1 Реляционная алгебра
- •4.3.1.1. Унарные операции
- •4.3.1.2. Бинарные операции
- •4.3.1.3. Правила реляционной алгебры
- •4.3.2. Реляционное исчисление
- •4.3.3. Языки реляционной логики
- •4.4. Нечеткая логика
- •4.4.1. Нечеткое исчисление
- •4.4.2. Экспертные системы
- •Вопросы и задачи
- •Глава 5. Основы теории алгоритмов
- •5.1. Рекурсивные функции
- •5.1.1. Базовые функции
- •5.1.2. Элементарные операции
- •5.2. Машина Тьюринга
- •5.2.1. Описание машины Тьюринга
- •5.2.2. Примеры машин Тьюринга
- •5.2.3. Композиция машин Тьюринга
- •5.3. Нормальные алгоритмы Маркова
- •5.4 Сложность вычислений
- •Вопросы и задачи
- •Глава 6. Конечные автоматы
- •6.1. Абстрактный автомат
- •6.1.1. Типы конечных автоматов
- •6.1.2. Описание автоматов
- •6.1.3. Автоматное моделирование алгоритмов
- •6.1.3.1. Автомат Мили - модель управляющего автомата
- •6.1.3.2. Автомат Мура - модель управляющего автомата
- •6.1.3.3. Микропрограммный автомат
- •6.1.4. Эквивалентность автоматов
- •6.1.5. Эквивалентность внутренних состояний автомата
- •6.1.5.1. Детерминированный автомат
- •6.1.5.2. Недетерминированный автомат
- •6.2. Структурный автомат
- •6.2.1. Произведение автоматов
- •6.2.1.1. Последовательное соединение автоматов
- •6.2.1.2. Параллельное соединение автоматов
- •Обратная связь автоматов
- •6.2.3. Сумма автоматов
- •6.2.4. Структурный автомат и кодирование
- •6.3. Логическое проектирование автоматов
- •6.3.1. Кодирование алфавитов автомата
- •6.3.2. Автоматы без “памяти”.
- •6.3.2.1. Формирование оператора
- •6.3.2.2. Формирование системы операторов
- •Логическая схема комбинационного автомата
- •6.3.3. Автоматы с “памятью”
- •6.3.3.1. Формирование оператора
- •6.3.3.2. Формирование оператора
- •.3.3.3. Логическая схема автомата с “памятью”
- •Вопросы и задачи
- •Литература
- •Предметный указатель
Обратная связь автоматов
Автоматы
М1
и М2
соединены так, как показано на рис. 6.17.
При этом в обратной связи чаще всего
применяют автомат Мура, поведение
которого есть:
при
2=1.
Пусть таблицей 6.37 дано описание автомата Мура.
Таблица 6.37
текущее состояние |
символы yY |
Выход М2 |
||
y11=y1=x21 |
y12=y2=x22 |
y13=y3=x23 |
||
q21 |
q21 |
q22 |
q21 |
y21 |
q22 |
q22 |
q22 |
q21 |
y22 |
Для автомата М имеем Q=(Q1Q2), Y1=X2=Y и :(XY2)X1.
Система
рекуррентных соотношений для описания
автомата М:
Оператор : (XY2)X1 формируется поставленной задачей.
Пусть он задан таблицей 6.38.
Таблица 6.38
символ xX |
символ y2iY2 |
|
y21 |
y22 |
|
x1 |
x11 |
x12 |
x5 |
x12 |
x11 |
Поведение автомата М описано таблицей 6.39
В таблице символом "*" обозначены позиции, для которых нет элементов в области определения оператора .
Например, согласно таблице 6.38, если q1=(q11, q21) и x11=(x1, y21) или x11=(x5, y22), то
q=(1(q11,
x11);
2(q21,
y11=x21))=
(q12,
q21)=
q3;
y=1(q11; x11))=y11 ,
или
q=(1(q11, x11); 2(q21, y22))=(q12, *)= *;
y=1(q11; x11)=y11 (см. таблицы 27-29, 31, 32).
Таблица 6.39 |
||||
текущее состояние |
аргумент функции (x;2(q2)) |
|||
(x1; y21) |
(x1; y22) |
(x5; y21) |
(x5; y22) |
|
q1=(q11; q21) |
q3; y11 |
*; y11 |
q1; y13 |
*;y13 |
q2=(q11; q22) |
* y11 |
q1; y11 |
*; y13 |
q4; y13 |
q3=(q12; q21) |
q6; y12 |
*; y11 |
q3; y11 |
*; y11 |
q4=(q12; q22) |
*; y12 |
q4; y11 |
*; y11 |
q6; y11 |
q5=(q13; q21) |
q5; y11 |
*; y11 |
q1; y11 |
*; y11 |
q6=(q13; q22) |
*; y11 |
q2; y11 |
*;y11 |
q6; y11 |
Всякий автомат в синхронном режиме может быть реализован сетью, состоящей из комбинационных автоматов и элементов задержки. Автомат Мура формирует задержку на один такт
6.2.3. Сумма автоматов
При асинхронном режиме работы автоматов M1 и M2 внутренние состояния сети принадлежат множеству Q=(Q1Q2).
Таблица 6.40
текущее состояние |
символы входного алфавита xX=(X1X2) |
||||
x11 |
x12 |
x21 |
x22 |
x23 |
|
q11 |
q12;y11 |
q11;y13 |
— |
— |
— |
q12 |
q;y12 |
q12;y11 |
— |
— |
— |
q |
q;y11 |
q11;y11 |
q;y21 |
q22;y21 |
q;y22 |
q22 |
— |
— |
q22;y21 |
q22;y21 |
q;y22 |
Для того, чтобы из двух автоматов сформировать сеть, необходимо определить заключительное состояние qk первого в очереди автомата, начальное состояние q0 следующего в очереди автомата и соединить эти состояния. В таблице 6.40 таким состоянием является q, принадлежащее двум автоматам.
