- •Оглавление
- •Глава 1. Алгебраические системы 17
- •Глава 2. Элементы комбинаторики 88
- •Глава 3. Основы теории графов 101
- •Глава 4. Основы математической логики 169
- •4.1.1.4. Эквивалентные преобразования формул 179
- •4.1.4. Выполнить подстановку: 247
- •Глава 5. Основы теории алгоритмов 252
- •Глава 6. Конечные автоматы 289
- •Введение
- •Глава 1. Алгебраические системы
- •1.1 Множества
- •1.1.1. Четкие множества
- •1.1.2. Нечеткие множества
- •1.2. Соответствия, отображения и функции
- •1.2.1. Четкие отображения и функции
- •1.2.2. Нечеткие отображения
- •1.3. Отношение
- •1.3.1. Четкие отношения
- •1.3.2. Нечеткое отношение
- •1.4. Элементы общей алгебры
- •1.5. Булева алгебра
- •1.5.1. Булевы операции
- •1.5.2. Законы булевой алгебры
- •1.5.3. Формула булевой функции
- •1.5.4. Описание булевой функции
- •1.5.5. Суперпозиция булевых функций
- •1.5.6. Свойства булевых функций
- •1.5.6.1. Самодвойственные булевы функции
- •1.5.6.2. Монотонные булевы функции
- •1.5.6.3. Линейные булевы функции
- •1.5.6.4. Функции, сохраняющие “0”
- •1.5.6.5. Функции, сохраняющие “1”
- •1.5.6.6. Функционально полные системы
- •1.5.7. Разложение булевых функции
- •1.5.7.1. Днф булевой функции
- •1.5.7.2. Кнф булевой функции
- •Алгоритм преобразования формулы к скнф:
- •1.5.8. Минимизация булевых функций.
- •1.5.8.1.Минимизация днф булевой функции
- •1.5.8.2. Минимизация кнф булевой функции
- •1.6. Алгебра четких множеств
- •1.6.1. Операции над множествами
- •1.6.2. Законы алгебры множеств
- •1.6.3. Эквивалентные преобразования формул
- •1.6.4. Композиция отображений и отношений
- •1.6.5. Поиск неизвестного множества
- •1.7. Алгебра нечетких множеств
- •1.7.1. Операции над нечеткими множествами
- •1.7.2. Композиция нечетких отображений
- •1.7.3. Композиция нечетких отношений
- •1.7.4. Свойства нечетких отношений
- •Вопросы и задачи
- •Глава 2. Элементы комбинаторики
- •2.1. Размещение из n элементов по k
- •2.2. Перестановка элементов
- •2.3 Сочетание из n элементов по k
- •2.4. Разбиение множества
- •2. 5 Правила комбинаторики
- •Вопросы и задачи
- •Глава 3. Основы теории графов
- •3.1. Граф и его характеристики
- •3.2. Описание графа
- •3. 3. Числа графа
- •3.4. Операции над графами
- •3.4.1. Унарные операции
- •3.4.1.1 Поиск дополнительного графа
- •3.4.1.2. Введение и удаление вершин графа
- •3.4.1.3. Стягивание вершин графа
- •3.4.1.4. Введение и удаление ребер графа
- •3.4.1.5. Поиск плотности и неплотности графа
- •3.4.1.6. Поиск числа компонент связности графа
- •3.4.1.7. Поиск устойчивости графа
- •3.4.1.8. Поиск цикломатического числа графа
- •3.4.1.9. Поиск хроматического числа графа
- •3.4.2. Бинарные операции
- •3.4.2.1. Объединение графов
- •3.4.2.2. Пересечение графов
- •3.4.2.3. Композиция графов
- •3.4.2.4. Соединение графов
- •3.4.2.5. Прямое произведение графов
- •3.4.2.6. Изоморфизм графов
- •3.5. Некоторые алгоритмы на графах
- •3.5.1. Построение покрывающего остова
- •3.5.2. Построение остова минимального веса
- •3.5.3. Поиск кратчайших путей в сети.
- •3.5.4. Поиск максимального потока в сети
- •3.5.5. Метод критического пути в управлении
- •3.6. Нечеткие графы
- •Вопросы и задачи
- •Глава 4. Основы математической логики
- •4.1. Логика высказываний
- •4.1.1. Алгебра высказываний
- •4.1.1.1. Логические операции
- •4.1.1.2. Правила записи сложных формул.
- •4.1.1.3. Законы алгебры высказываний
- •4.1.1.4. Эквивалентные преобразования формул
- •4.1.1.5. Нормальные формы формул
- •4.1.2. Исчисление высказываний
- •4.1.2.1. Интерпретация формул
- •4.1.2.2. Аксиомы и правила введения и удаления логических связок
- •4.1.2.3. Метод дедуктивного вывода
- •4.1.2.4. Принцип резолюции
- •4. 2. Логика предикатов
- •4.2.1. Алгебра предикатов
- •4.2.1.1. Законы алгебры предикатов
- •4.2.1.2. Предваренная нормальная форма формулы
- •4.2.1.3 Сколемовская стандартная форма формулы
- •4. 2. 2. Исчисление предикатов
- •4.2.2.1. Правила подстановки
- •4.2.2.2. Правила введения и удаления кванторов
- •4.2.2.3. Правила заключения
- •4.2.2.4. Метод дедуктивного вывода
- •4.2.2.5. Принцип резолюции
- •4.2.2.6. Логическое программирование
- •4.3. Логика реляционная
- •4.3.1 Реляционная алгебра
- •4.3.1.1. Унарные операции
- •4.3.1.2. Бинарные операции
- •4.3.1.3. Правила реляционной алгебры
- •4.3.2. Реляционное исчисление
- •4.3.3. Языки реляционной логики
- •4.4. Нечеткая логика
- •4.4.1. Нечеткое исчисление
- •4.4.2. Экспертные системы
- •Вопросы и задачи
- •Глава 5. Основы теории алгоритмов
- •5.1. Рекурсивные функции
- •5.1.1. Базовые функции
- •5.1.2. Элементарные операции
- •5.2. Машина Тьюринга
- •5.2.1. Описание машины Тьюринга
- •5.2.2. Примеры машин Тьюринга
- •5.2.3. Композиция машин Тьюринга
- •5.3. Нормальные алгоритмы Маркова
- •5.4 Сложность вычислений
- •Вопросы и задачи
- •Глава 6. Конечные автоматы
- •6.1. Абстрактный автомат
- •6.1.1. Типы конечных автоматов
- •6.1.2. Описание автоматов
- •6.1.3. Автоматное моделирование алгоритмов
- •6.1.3.1. Автомат Мили - модель управляющего автомата
- •6.1.3.2. Автомат Мура - модель управляющего автомата
- •6.1.3.3. Микропрограммный автомат
- •6.1.4. Эквивалентность автоматов
- •6.1.5. Эквивалентность внутренних состояний автомата
- •6.1.5.1. Детерминированный автомат
- •6.1.5.2. Недетерминированный автомат
- •6.2. Структурный автомат
- •6.2.1. Произведение автоматов
- •6.2.1.1. Последовательное соединение автоматов
- •6.2.1.2. Параллельное соединение автоматов
- •Обратная связь автоматов
- •6.2.3. Сумма автоматов
- •6.2.4. Структурный автомат и кодирование
- •6.3. Логическое проектирование автоматов
- •6.3.1. Кодирование алфавитов автомата
- •6.3.2. Автоматы без “памяти”.
- •6.3.2.1. Формирование оператора
- •6.3.2.2. Формирование системы операторов
- •Логическая схема комбинационного автомата
- •6.3.3. Автоматы с “памятью”
- •6.3.3.1. Формирование оператора
- •6.3.3.2. Формирование оператора
- •.3.3.3. Логическая схема автомата с “памятью”
- •Вопросы и задачи
- •Литература
- •Предметный указатель
6.1.3.3. Микропрограммный автомат
Модель современного компьютера представляет собой композицию операционного и управляющего автоматов. Множество функциональных операций могу быть выполнены последовательно исполнением элементарных шагов. Например, таких как пересылка операнда из одного регистра в другой, очистка сумматора, преобразование прямого кода в обратный, исполнение операции счета, сложения или сравнения и т.п..
Элементарная операция, выполняемая операционным автоматом за один шаг и приводимая в действие одним управляющим сигналом от управляющего автомата, называется микрооперацией.
Микрооперации могут быть одноместными или двухместными. Микрооперация описывается микрооператором и идентификатором управляющего сигнала, вызывающего выполнение микрооперации. В некоторые такты могут поступать в операционный автомат несколько управляющих сигналов, вызывая параллельное во времени исполнение микроопераций. Совокупность управляющих сигналов, возбуждаемых управляющим автоматом за один такт, называется микрокомандой. Описание микрокоманды производится аналогично описанию микроопераций и представляет собой метку микрокоманды и совокупность микрооператоров.
Последовательность микрокоманд, обеспечивающая выполнение функциональной операции, называется микропрограммой.
Например, для исполнения арифметических операций сложения и вычитания необходимо составить следующую микропрограмму.
Такты |
Операторы и условия |
Комментарии |
1 |
y1: РгВ:=ШиВх |
принять во входной регистр сумматора В первый операнд из входной шины ШиВх; |
2 |
y2: Рг1:=ШиВх |
принять в регистр 1 АЛУ второй операнд из входной шины ШиВх; |
3 |
условие |
второй операнд положительный? |
|
p1 |
"да", |
|
p-1 |
"нет"; |
|
y3: РгА:=Pг1 |
если второй операнд положительный, то принять во входной регистр сумматора А второй операнд из Рг1 в прямом коде; |
|
y4: РгА=-Рг1 |
если второй операнд отрицательный, то принять во входной регистр сумматора А второй операнд из Рг1 в обратном коде; |
4 |
условие |
операция сложения? |
|
p2 |
"да", |
|
p-2 |
"нет"; |
|
y5: РгСм:=РгА+РгВ |
если p2, то принять в выходной регистр сумматора См значение cуммы двух операндов; |
|
y6:: РгСм:=РгА+РгВ+1 |
Если не p2, то принять в выходной регистр сумматора См значение суммы двух операндов и прибавить "+1"; |
|
|
|
5 |
y7: ШиВых:=РгСм |
Выдать в шину выхода ШиВых значения выходного регистра РгСм сумматора. |
Составив блок-схему микропрограммы, можно перейти к ее разметке для формирования автоматной модели, к определению поведения модели управляющего автомат и минимизации числа его внутренних состояний. На рис.6.13 приведена разметка блок-схемы алгоритма для автомата Мили, а в таблице 6.15 - его поведение.
Таблица 6.15
qQ |
символы входного алфавита xX |
||||
1 |
p1 |
p-1 |
p2 |
p-2 |
|
q0 |
q1; y1 |
— |
— |
— |
— |
q1 |
q2; y2 |
— |
— |
— |
— |
q2 |
— |
q3; y3 |
q4; y4 |
— |
— |
q3 |
— |
— |
— |
q5; y5 |
q6; y6 |
q4 |
— |
— |
— |
q5; y5 |
q6; y6 |
q5 |
q7; y7 |
— |
— |
— |
— |
q6 |
q7; y7 |
— |
— |
— |
— |
q7 |
q0; - |
— |
— |
— |
— |
В таблице 6.15 дано описание автомата Мили на основе выполненной разметки блок-схемы алгоритма.
