
- •Предисловие
- •Программа курса «Молекулярная физика. Термодинамика.»
- •2. Учебно-тематический план
- •3. Содержание курса
- •4. Примерная тематика семинарских занятий
- •5. Средства обеспечения дисциплины
- •Введение
- •Все вещества состоят из атомов или молекул
- •Атомы и молекулы веществ находятся в состоянии беспорядочного движения
- •Между атомами и молекулами вещества действуют как силы притяжения, так и силы отталкивания.
- •Глава 1 Термодинамика
- •§1. Температура и термодинамическое равновесие
- •Давление
- •§2. Уравнение состояния идеального газа
- •§3. Законы идеальных газов
- •Изотермический процесс
- •Изобарический процесс
- •Закон Авогадро
- •Закон Дальтона
- •§4. Первое начало термодинамики
- •§5. Макроскопическая работа
- •I начало термодинамики для системы в адиабатической оболочке
- •§6. Внутренняя энергия
- •§7. Количество теплоты. Математическая формулировка первого начала термодинамики
- •§8. Различные приложения I начала термодинамики. Теплоёмкость
- •§9. Внутренняя энергия идеального газа. Закон Джоуля
- •Уравнение Роберта Майера
- •§10. Адиабатический процесс. Уравнение Пуассона
- •Работа при адиабатическом изменении объёма газа
- •§11. Политропический процесс
- •Вопросы и задания для самостоятельной работы студентов Основы термодинамики. I начало термодинамики
- •§12. II начало термодинамики
- •Различные формулировки основного постулата, выражающего II начало термодинамики
- •§13. Равновесные состояния
- •§14. Обратимые и необратимые процессы
- •Необратимость и вероятность
- •§15. Цикл Карно
- •Коэффициент полезного действия в цикле Карно
- •§16. Холодильная машина
- •§17. Свободная энергия
- •§18. Энтропия
- •§19. Некоторые термодинамические соотношения
- •§20. Закон возрастания энтропии. Второе начало термодинамики
- •Увеличение энтропии при теплопередаче
- •§21. Энтропия и вероятность
- •§22. Энтропия и беспорядок
- •§23. Третье начало термодинамики
- •Вопросы для контроля самостоятельной работы студентов
- •II начало термодинамики. Энтропия.
- •Глава 2. Неравновесная термодинамика §1. Основные принципы линейной термодинамики
- •§2. Нелинейная термодинамика
- •§3. Принцип синергетики
- •Свойства и примеры самоорганизации диссипативных структур
- •Глава 3. Статистическая физика и её применение к идеальному газу
- •§1. Давление газа с точки зрения молекулярно – кинетической теории
- •§2. Температура как мера средней энергии хаотичного движения молекул
- •Скорость газовых молекул
- •§3. Броуновское движение
- •§4. Кинетическая теория теплоты Внутренняя энергия идеального газа
- •§5. Классическая теория теплоёмкости и её недостатки
- •§6. Барометрическая формула
- •Закон Больцмана
- •§7. Распределение молекул по скоростям
- •§8. Функция распределения
- •§9. Формула Максвелла
- •§10. Средняя арифметическая, средняя квадратичная и наивероятнейшая скорости молекул
- •§11. Среднее число молекул, сталкивающихся со стенкой сосуда
- •Вопросы для контроля знаний студентов Молекулярно-кинетическая теория
- •Глава 4. Явления переноса §1. Столкновение молекул и явления переноса
- •§2. Среднее число столкновений в единицу времени и средняя длина свободного пробега молекул
- •§3. Рассеяние молекулярного пучка в газе
- •§4. Явление переноса в газах. Уравнение переноса
- •§5. Диффузия
- •§6. Нестационарная диффузия
- •§7. Теплопроводность газов
- •§8. Вязкость газов (внутреннее трение)
- •§9. Соотношения между коэффициентами переноса
- •§10. Физические явления в разреженных газах
- •Вопросы для самостоятельного контроля знаний студентов Явления переноса
- •Глава 5 §1. Неидеальные газы. Уравнение Ван-дер-Ваальса. Отклонение свойств газов от идеальности
- •Уравнение Ван-Дер-Ваальса
- •§2. Учет сил отталкивания между молекулами
- •§3. Учет сил притяжения между молекулами
- •§4. Изотермы Ван-дер-Ваальса
- •§5. Критическая температура и критическое состояние
- •§6. Недостатки уравнения Ван-дер-Ваальса
- •§7. Внутренняя энергия газа Ван-дер-Ваальса
- •§8. Приведенное уравнение Ван-дер-Ваальса. Закон соответственных состояний
- •§9. Сжижение газов
- •Эффект Джоуля-Томсона
- •Вопросы для самоконтроля изученного материала Реальные газы
- •Глава 6. Жидкое состояние §1.Строение жидкостей
- •§2. Поверхностное натяжение
- •§3. Условия равновесия на границе двух сред. Краевой угол
- •§4. Граница жидкости и твердого тела
- •§5. Силы, возникающие на кривой поверхности жидкости
- •§6. Капиллярные явления
- •§7. Упругость насыщенного пара над кривой поверхностью жидкости
- •Вопросы для самоконтроля знаний студентов
- •Глава 7. Жидкие растворы §1. Свойства растворов
- •§2. Упругость насыщенного пара над идеальным раствором
- •§3. Закон Генри
- •§4. Осмотическое давление
- •Глава 8. Кристаллическое состояние §1. Отличительные черты кристаллического состояния
- •§2. Классификация кристаллов
- •§3. Физические типы кристаллических решеток
- •§4. Тепловое движение в кристаллах
- •Глава 9. Фазовые переходы §1. Фаза и фазовые равновесия
- •§2. Условия равновесия фаз химически однородного вещества
- •§3. Уравнение Клапейрона
- •Вопросы для самоконтроля знаний студентов
- •Содержание
Глава 9. Фазовые переходы §1. Фаза и фазовые равновесия
Если система разделяется на граничащие друг с другом однородные части, находящиеся в физически различных состояниях, то эти части называются фазами системы.
Примеры. В закрытом сосуде заключена некоторая масса воды, над которой находится смесь воздуха с водяными парами. Эта система является двухфазной. Если бы воздуха не было, то в системе было бы также две фазы. Если бросить кусочек льда, то система превратится в трехфазную. При добавлении к воде некоторого количества спирта, число фаз не изменится. Если добавить ртуть, то ртуть с водой не смачивается и получается система с двумя жидкими фазами. В системе может быть несколько твердых и жидких фаз. Но она не может содержать более одной газообразной фазы, так как все газы смешиваются между собой.
Важнейшим вопросом в учении о фазах является выяснение условий, при котором система, состоящая из двух или нескольких фаз, находится в равновесии. Оно включает в себя механические и тепловые равновесия. Для теплового равновесия необходимо, чтобы все фазы системы имели одну и ту же температуру. Необходимым условием механического равновесия является равенство давлений по разные стороны границы раздела соприкасающихся фаз. Последнее условие справедливо в случае плоских границ раздела. Равенство давлений и температур еще не означает, что система находится в состоянии равновесия, так как соприкасающиеся фазы могут превращаться друг в друга. Такие превращения называются фазовыми превращениями. В фазовых превращениях одни фазы растут, другие уменьшаются и вовсе могут исчезнуть. Состояние равновесия характеризуется тем, что массы всех фаз системы остаются неизменными. Следовательно, должно быть выполнено еще одно необходимое условие равновесия - равновесия по отношению к взаимным превращениям фаз.
Примерами фазовых превращений могут служить изменение агрегатного состояния вещества. Под агрегатными состояниями понимают твердое, жидкое, газообразное состояния вещества. Твердое и жидкое состояния называют конденсированными состояниями вещества. Испарением или парообразованием называют переход вещества из конденсированного состояния в газообразное. Обратный переход называется конденсацией. В узком смысле испарение есть переход вещества из жидкого состояния в газообразное. Переход твердого состояния непосредственно в газообразное называется сублимацией или возгонкой. Переход из твердого состояния в жидкое называется плавлением, а обратный переход из жидкого состояния в твердое - затвердеванием или кристаллизацией.
Твердое состояние вещества может реализоваться в различных кристаллических модификациях. Это явление называется полиморфизмом. Например, твердый углерод может существовать в виде графита или алмаза, которые отличаются друг от друга кристаллической структурой. При изменении температуры и давления одни модификации могут превращаться в другие. Такие превращения относятся также к числу фазовых превращений.
Рассмотрим более подробно простейший пример фазовых превращений - испарение и конденсацию. На этом примере лучше всего уяснить смысл равновесия между фазами. Допустим, что в закрытом сосуде заключена некоторая масса жидкости, над которой находится ее пар. Объем сосуда остается неизменным, а температура поддерживается постоянной. Молекулы вещества совершают движение, и все время пересекают границу раздела между жидкостью и паром. Происходит непрерывный обмен молекулами между этими двумя фазами. Если из жидкости в пар переходит больше молекул, чем из пара в жидкость, то количество жидкости уменьшается, т.е. идет процесс испарения. Тогда говорят, что пар над жидкостью ненасыщенный, или перегретый. Если, наоборот, число молекул, переходящих из пара в жидкость, превышает число молекул, переходящих в обратном направлении, то пар конденсируется в жидкость. В этом случае пар называется пересыщенным. Наконец, когда число молекул, переходящих из жидкости в пар, равно числу молекул, переходящих за то же время из пара в жидкость, наступает состояние динамического или статистического равновесия, в котором количество вещества в каждой фазе в среднем остается неизменным. Это и есть состояние фазового равновесия. Вообще фазовое равновесие между любыми фазами 1 и 2 не есть статическое состояние, в котором полностью прекратились фазовые превращения, а характеризуется равенством средних скоростей двух взаимно противоположных процессов: превращения фазы 1 в фазу 2 и обратного превращения фазы 2 в фазу 1. При равновесии эти противоположные процессы взаимно компенсируют друг друга. Благодаря этому количество вещества в каждой фазе в среднем остается неизменным.