
- •Тема 1. Комплексная микроминиатюризация и автоматизированные
- •Цели и задачи микроэлектронной аппаратуры
- •Основные пути выбора конструктивно-компоновочной схемы и методов монтажа мэа
- •Элементная база и ее влияние на конструкцию мэа
- •Корпусированная элементная база
- •Динамика развития основных исходных конструкторских
- •Бескорпусная элементная база
- •Исходные данные задания
- •Порядок выполнения задания
- •Пример выполнения задания практического занятия
- •Результаты, полученные при выполнении задания
- •Тема 2. Конструктивные исполнения и современные технологии сборки элементной базы.
- •Микросхемы, элементы, компоненты
- •Классификация микросхем
- •Современные корпуса дискретных полупроводниковых приборов или их сборок
- •Современные корпуса дискретных полупроводниковых приборов или их сборок
- •Бескорпусная элементная база
- •Имс с проволочными выводами
- •Термокомпрессионная сварка
- •Сварка с косвенным импульсным нагревом
- •Кристаллы с балочными выводами
- •Имс с организованными шариковыми выводами
- •Имс с организованными выводами на гибком носителе
- •Классификация типов ленточных носителей
- •Одноточечная автоматизированная сборка на ленту-носитель
- •Резисторы
- •Основные сведения об объемных резисторах
- •Конденсаторы
- •Относительные диэлектрические проницаемости
- •Катушки индуктивности
- •Технология монтажа пассивных компонентов
- •Практическое занятие оптимизация технологических режимов процесса микроконтактирования бескорпусных кристаллов сбис в электронных устройствах с высокоплотным монтажом
- •Теоретические сведения Элементная база для сборки и монтажа мэу
- •Оценка и анализ качества микроконтактирования
- •Порядок выполнения заданий
- •Примеры выполнения заданий практического занятия Задание 1
- •Задание 2
- •Тема 3. Многоуровневые коммутационные системы.
- •Монтаж микросборок и ячеек мэа
- •Сводные характеристики многослойных керамических плат
- •Типы печатных плат
- •Двухсторонние печатные платы
- •Многослойные печатные платы
- •Гибкие печатные платы
- •Рельефные печатные платы (рпп)
- •Характеристики рельефных плат
- •Сравнение технологических и стоимостных характеристик рельефной и многослойной печатной платы
- •Гибкие печатные платы
- •Основные элементы конструкции гибких печатных плат
- •Полиимидные пленки
- •Адгезивы
- •Гибко-жёсткие печатные платы
- •Миниатюрные охлаждающие агрегаты
- •Радиаторы
- •Теплопроводящие трубки
- •Углеродные нанотрубки
- •Охлаждение элементом Пельтье
- •Плоские теплоотводы
- •Охлаждение микросхем распылением на них жидкости
- •Капиллярная система теплоотвода ibm
- •Особенности обеспечения теплоотвода в теплонапряженных модулях
- •Обеспечение теплоотвода при монтаже высокоскоростных модулей на основе бескорпусных бис
- •Конструкции и компоновочные схемы радиоэлектронных ячеек
- •Особенности конструктивно-технологических принципов построения мэа свч диапазона и источников вторичного электропитания.
- •Особенности монтажа микросборок и ячеек свч диапазона.
- •Теоретические сведения
- •Сравнительные параметры мкп, выполненных по различным технологиям
- •Исходные данные заданий
- •Пример выполнения задания практического занятия
- •Тема 4. Технологии внутриячеечного монтажа.
- •Лекция 18. Паяные соединения. Особенности и способы пайки. Бесфлюсовая пайка. Контроль качества. Бессвинцовая технология пайки. Общее понятие процесса пайки и паяных швов.
- •Технология пайки
- •Основный виды пайки.
- •Способы пайки.
- •Типы паяных соединений.
- •Подготовка деталей к пайке и пайка.
- •Дефекты паяных соединений и контроль качества. Типы дефектов паяных соединений.
- •Контроль качества.
- •Возможные дефекты
- •Выбор припойной пасты.
- •Состав припойных паст.
- •Характеристики частиц в припойных пастах.
- •Свойства флюсов.
- •Трафаретный метод нанесения припойной пасты.
- •Диспенсорный метод нанесения припойной пасты
- •Нанесение припойной пасты.
- •Результаты выполнения задания
- •Тема 5. Конструкторско-технологические особенности
- •Лекция 24,25. Герметизация компонентов рэа. Способы контроля герметичности.
- •Структура процесса герметизации
- •Входной контроль
- •Приготовление герметизирующего состава
- •Подготовка герметизируемого изделия
- •Герметизация изделий
- •Сварка.
- •Пропитка
- •Обволакивание
- •Заливка
- •Опрессовка
- •Герметизация капсулированием
- •Герметизация в вакуум-плотных корпусах
- •Практическое занятие герметизация эвс и их конструктивов
- •Теоретические сведения
- •Исходные данные задания
- •Пример выполнения задания практического занятия
- •Порядок выполнения задания
- •Пример выполнения задания практического занятия
Бескорпусная элементная база
Бескорпусные большие интегральные схемы (БК БИС) находят самое широкое применение, отвечая проблемам комплексной микроминиатюризации (так как наибольшая монтажная площадь, которую может занимать СБИС на коммутационной плате, - это посадочная площадь самого кристалла). А компьютерно-интегрированная технология сборки обеспечивает прекрасные экономические показатели (низкая трудоемкость и себестоимость). Как правило БК ЭБ используется для монтажа бортовой аппаратуры.
Для БК СБИС имеется широкий выбор материалов и выводов, а также технологий микроконтактирования. Также БК СБИС имеют наименьшие значения переходных сопротивлений, паразитных емкостей и индуктивностей, что способствует повышению скорости обработки сигналов МКМ.
Надежность бескорпусных СБИС не ниже, а при определенных конструктивных исполнениях и выше, чем у корпусированных, по следующим причинам:
уменьшено количество микросварных и паяных соединений на одну контактную площадку;
исключено влияние корпуса на функционирование СБИС;
улучшены условия теплоотвода за счет непосредственного монтажа на теплоотводящие платы без дополнительных переходных элементов;
повышена устойчивость к механическим воздействиям, чему способствует прежде всего малая масса БК СБИС и конструктивов с их применением.
Вся элементная база (ЭБ) классифицируется по ГОСТу 20.39.405… БК ЭБ. Для стандартизации бескорпусной элементной базы существует отраслевой стандарт (ОСТ) ОСТ В11 079.067…
В соответствии с ОСТом БК ЭБ подразделяется на 5 модификаций:
модификация «1» - микросхемы с гибкими проволочными выводами;
модификация «2» - микросхемы с ленточными выводами на гибком полимерном носителе;
модификация «3» - микросхемы с жесткими (шариковыми или столбиковыми) выводами;
модификация «4» - микросхемы на общей пластине;
модификация «5» - микросхемы на общей пластине, разделенные без потери ориентации.
Имс с проволочными выводами
Современные методы сборки бескорпусных СБИС основываются на двух направлениях: проволочной сборке и сборке с организованными выводами. До недавнего времени наиболее распространенным методом была проволочная сборка с помощью алюминиевых или золотых проволочных выводов. Процессы присоединения таких выводов к контактным площадкам кристалла достаточно отработаны, аналогичны монтажу кристалла в корпус. Монтажные операции, связанные с присоединением выводов, осуществляются, во-первых, для создания внутрисхемных соединений при монтаже кристаллов на подложках гибридных пленочных микросхем и микросборок (контактная площадка кристалла при этом соединяется с контактной площадкой подложки с помощью перемычки или непосредственно); во-вторых, для коммутации контактных площадок кристалла ИМС или периферийных контактов гибридных микросхем и микросборок с внешними выводами корпуса.
Выводы можно присоединять микросваркой или пайкой.
С помощью пайки получают ремонтопригодные соединения. В то же время, паяное соединение характеризуется относительно большой плоскостью и сам процесс низкой производительностью, возможно растворение материала перемычек и пленочных контактов в расплавленном припое; воспроизводимость параметров соединений не высока. В связи с этим применение пайки для присоединения выводов ограничено.
При микросварке, соединение может быть получено за счет плавления и давления. Микросварка плавлением основана на сильном локальном нагреве и ускоренной взаимной диффузии соединяемых материалов. Возможность образования при этом хрупких интерметаллических соединений и ухудшение адгезии тонких металлических пленок к подложке ограничивает применение этого метода.
Наиболее широко применяют разновидности микросварки давлением, при которых соединение формируется в твердой фазе за счет сжатия поверхностей и нагрева. Это обусловлено возможностью управления параметрами процесса, его механизации и автоматизации, высоким качеством и воспроизводимостью параметров соединения. При микросварке давлением формы и размеры сварной точки строго определены рабочей частью инструмента и площадью получаемого соединения.
В качестве выводов используют проволоку крупного сечения из золота или алюминия. Недостатками такой проволоки являются высокая стоимость, большой удельный вес, снижающаяся стойкость к вибрациям и ударным нагрузкам, невысокое сопротивление разрыву (для отожженной проволоки около 120 Н/мм2) и возможность образования при неблагоприятных условиях с алюминием хрупких и пористых соединений типа AlnAum.
Использование выводов из чистого алюминия (например, марки А995) также ограничено из-за невысокой прочности (для мягкой проволоки около 75 Н мм2), что вынуждает увеличивать диаметр проволоки до 100 мкм и приводит к увеличению площади проектируемых контактов. Лучшие характеристики имеет проволока из алюминий-кремниевого сплава А999К09 и АК09П, и алюминий-магниевого сплава АМ2 08, прочность которых, в отожженном состоянии достигает 450 Н мм2 при относительном удлинении до 4%.
Обычно при проволочном монтаже применяются соединения встык и внахлест (рис.1).
Рис. 1. Присоединение проволочных выводов встык и внахлест
При отсутствии загрязнений на соединяемых поверхностях прочность соединений зависит от площади контакта. Давление инструмента на проволоку приводит к пластической деформации материала проволоки. Однако при этом снижается прочность проволоки в месте перехода от деформируемого участка к недеформированному. При механических воздействиях здесь возникает концентрация напряжений. В связи с этим сварку проволочных выводов внахлест целесообразно выполнять с переменной по длине сварки деформацией проволоки. Это достигается наклоном инструмента на несколько градусов в сторону, противоположную формируемой перемычке. Во избежание подреза проволоки кромка инструмента должна быть закруглена. При сварке встык плавный переход проволоки в деформированную область обеспечивается закруглением или фаской у выхода отверстия инструмента. Площадь контакта соединения зависит от площади рабочего торца инструмента, от диаметра проволоки и степени ее деформации.
В зависимости от материала вывода и контактной площадки используют термокомпрессионную сварку (ТКС), сварку косвенным импульсным нагревом (СКИН), электроконтактную одностороннюю сварку (ЭКОС) сдвоенным инструментом и ультразвуковую сварку (УЗС). Определяющей тенденцией развития методов микросварки от ТКС до УЗС является локализация зоны нагрева, что уменьшает тепловое воздействие на изделие в целом и повышает воспроизводимость параметров сварного соединения. В таблице 1 приведена эффективность различных методов сварки в зависимости от материала КП и выводов.
Таблица 1
Эффективность различных методов сварки
Материал контактной площадки |
Метод сварки материалов и выводов |
|||||||||||
ТКС |
СКИН |
ЭКОС |
УЗС |
|||||||||
Au |
Al |
Cu |
Au |
Al |
Cu |
Au |
Al |
Cu |
Au |
Al |
Cu |
|
Au с подслоем нихрома |
++ |
+ |
- |
++ |
++ |
+ |
++ |
- |
++ |
++ |
++ |
+ |
Cu или Ni с подслоем нихрома |
++ |
+ |
- |
++ |
++ |
+ |
++ |
- |
+ |
+ |
++ |
+ |