- •«Основы автоматики и систем автоматического управления
- •1Лекция №1 Введение
- •1.1Цель и задачи дисциплины, ее место в учебном процессе
- •1.2История развития сау
- •1.3Основные определения и термины
- •1.4Принцип обратной связи
- •1.5Система и ее среда
- •1.6Вопросы
- •2Лекция №2 Постановка задачи управления технологическими процессами производства рэс
- •2.1Рабочие операции и операции управления
- •2.2Понятие об объекте управления и управляющей подсистеме
- •2.3Постановка задачи
- •Вопросы
- •3Лекция №3 Решение задачи управления
- •3.1Решение общей задачи управления
- •3.2Частные решения задачи управления
- •3.3Вопросы
- •4Лекция №4 Сведения о технических средствах автоматики
- •4.1Сравнение биологических и технических систем управления
- •4.2Исполнительные устройства
- •Классификация технических задач управления
- •4.3Элементы системы автоматического управления технологическими процессами
- •4.4Устройства измерения параметров технологических процессов
- •4.5Различитель уровня
- •4.6Вопросы
- •5Лекция №5 Вторичные приборы сау
- •5.1Классификация вторичных приборов
- •5.2Усилительные устройства
- •5.3Проектирование и теория управления производственными процессами
- •5.4Вопросы
- •6Лекция №6 Математическое описание линейных систем автоматического управления
- •6.1Классификация систем
- •6.2Принцип суперпозиции
- •6.3Уравнения динамических систем
- •6.4Передаточные функции
- •6.5Частотные функции
- •6.6Временные характеристики сау. Понятие о функции Грина
- •6.7Вопросы
- •7Лекция №7 Типовые звенья сау
- •7.1Вопросы
- •8Лекция №8 Передаточные функции типовых звеньев
- •8.1Вопросы
- •9Лекция №9 Устойчивость линейных стационарных систем
- •9.1Понятие устойчивости
- •9.2Устойчивость по входу
- •9.3Характеристическое уравнение
- •9.4Необходимое и достаточное условие устойчивости
- •9.5Условие строгой реализуемости передаточной функции
- •9.6Алгебраические критерии устойчивости
- •9.7Критерий устойчивости Гурвица
- •9.8Критерий Льенара
- •9.9Критерий устойчивости Рауса
- •9.10 Вопросы
- •10Лекция № 10 Частотные критерии устойчивости
- •10.1Критерий Михайлова
- •10.2Анализ устойчивости типовых структур
- •10.3Понятие запаса устойчивости по амплитуде и фазе
- •10.4Влияние звена чистого запаздывания на устойчивость
- •10.5Вопросы
- •11Лекция №11 Основы анализа качества линейных стационарных сау
- •11.1Постановка задачи
- •11.2Показатели качества переходного процесса
- •11.3 Интегральные показатели качества
- •11.4Вопросы
- •12Лекция №12 Анализ точности работы линейной системы автоматического управления
- •12.1Случайные процессы в линейных стационарных системах
- •12.2Вопросы
- •13Лекция №13 Полигауссовы модели случайных воздействий и методы их анализа
- •13.1Дифференцирующее звено
- •13.2Средняя квадратическая ошибка системы
- •13.3Вопросы
- •14Лекция №14 Синтез линейных стационарных систем
- •14.1Проектирование сау
- •14.2Синтез линейных систем методом частотных характеристик
- •14.3Вопросы
- •15Лекция №15 Расчет передаточных функций корректирующих устройств
- •15.1Вопросы
- •16Лекция № 16 Синтез сау методом логарифмических частотных характеристик
- •16.1 Общие замечания
- •16.2Синтез сау методом логарифмических частотных характеристик
- •16.3Подчиненное управление в сау
- •Примечание:
- •16.4 Модальное управление в сау
- •16.5 Вопросы
- •17Лекция № 17 Синтез систем с неполной информацией о входных воздействиях
- •17.1Ограничение суммарной ошибки
- •17.2Вопросы
9.6Алгебраические критерии устойчивости
Акцентируем теперь внимание на то обстоятельство, что проверка условия устойчивости характеристического многочлена не требует вычисления всех его корней, а лишь выяснения того, расположены ли корни только в левой полуплоскости комплексной переменной P.
Нельзя ли установить этот факт, не находя корней?
Ответ на этот вопрос положительный. Алгебраическая проблема проверки устойчивости многочленов была впервые поставлена Максвеллом. Детальное и простое изложение этой проблемы содержится в книге «Устойчивые многочлены» Пестиков М.М.– М. Наука, 1981 -175 с.
Прежде всего, установим необходимое условие устойчивости.
Теорема. Если многочлен Q(P) с устойчив, то все его коэффициенты положительны an>0.
Доказательство теоремы
Используем разложение многочлена Q(P) на простые двучлены и трехчлены. Каждому вещественному корню соответствует двучлен , каждой паре комплексно сопряженных корней - трехчлен , если все , , то коэффициенты во всех двучленах и трехчленах положительны, следовательно, положительны и коэффициенты в многочлене Q(P), являющимся их произведением.
Пример 1 Многочлен , заведомо неустойчив, поскольку коэффициент при P2 равен нулю.
Выполнение условия необходимости не гарантирует устойчивости многочлена при любом n, хотя оно достаточно при n=1, и n=2. При больших (n>2) приходится использовать более сложные процедуры. Кроме того, как известно из алгебры для уравнений 3 и 4 степени имеются общие формулы для нахождения корней, а для уравнений 5степени и выше, таких формул нет. Поэтому для систем выше 2 порядка особенно важны условия, которые позволяли бы судить об их устойчивости, не вычисляя корней характеристического уравнения. Такие условия называются критериями устойчивости.
9.7Критерий устойчивости Гурвица
Для формулировки критерия Гурвица составим из характеристического уравнения определитель n-го порядка.
На главной диагонали, которого располагаются коэффициенты в порядке возрастания их индексов, начиная с a1 кончая an. В каждом столбце при движении от элемента, находящегося на главной диагонали, вверх индексы коэффициентов возрастают, вниз убывают, при этом на месте элементов с индексами, превышающими n (при движении вверх) и отрицательными индексами (при движении вниз), проставляются нули. Запишем частные миноры определителя
и.т.д.
Назовем эти миноры, включая определитель , определителями Гурвица.
Формулировка критерия устойчивости Гурвица
Для того чтобы система была устойчива, необходимо и достаточно, чтобы все определители Гурвица, составленные из коэффициентов её характеристического уравнения, были больше нуля (при a0>0).
i=1,n при a0>0
Из этого критерия следует, что при n=3, необходимое и достаточное условие устойчивости имеет вид.
Пример. Используем устойчивость системы в разомкнутом и замкнутом состояниях. Характеристическое уравнение разомкнутой системы . Необходимое условие не выполняется, т.к. при коэффициент a2=0. Поэтому разомкнутая система неустойчива.
Характеристическое уравнение замкнутой системы.
Проверим
Замкнутая система устойчива.