Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
examination_question.doc
Скачиваний:
88
Добавлен:
27.08.2019
Размер:
4.38 Mб
Скачать

Механические волны(уч.10кл.Стр.323-324)

Физическая модель волнового процесса

Способы передачи энергии и импульса между двумя точками пространства

Определение волнового процесса

Определение возмущения

Определение механической волны

Условия распространения механической волны

Определение скорости механической волны

Существует два фундаментальных способа передачи энергии и импульса между двумя точками пространства:

- непосредственное перемещение частиц из одной точки в другую

- перенос энергии без переноса вещества в результате последовательной передачи энергии и импульса по цепочке между соседними взаимодействующими друг с другом частицами среды. (Волновой процесс)

Волновой процесс – процесс переноса энергии без переноса вещества.

В результате внешнего воздействия на среду в ней возникает

возмущение – отклонение частиц среды от положения равновесия.

Механическая волна – возмущение, распространяющееся в упругой среде.

Наличие упругой среды – необходимое условие распространения механической волны.

Скорость механической волны – скорость распространения возмущения в среде.

Длина волны – расстояние, на которое распространяется волна за период колебаний ее источника

λ = vT

v – скорость распространения волны

Т – период волны

При возникновении волн их частота определяется частотой колебаний источника, а скорость – средой, где они распространяются, поэтому волны одной частоты могут иметь в разных средах различную длину.

Скорость распространения волны

См. Механические волны (уч.10кл.стр.323-324)

Скорость механической волны – скорость распространения возмущения в среде.

Длина волны(уч.10кл.Стр.329)

См. Периодические волны (уч.10кл.стр.329)

Определение длины волны (уч.10кл.стр.329)

Длина волны – расстояние, на которое распространяется волна за период колебаний ее источника

λ = vT

v – скорость распространения волны (скорость распространения возмущения в среде)

Т – период волны

При волне в газе или жидкости расстояние между областями наибольшего сжатия определяет длину волны.

Поперечные и продольные волны(уч.10кл.Стр.324-328)

Определение механической волны(см.выше уч.10кл.стр.323-324)

Определение продольной волны. Примеры

Физическая модель продольной волны

Определение поперечной механической волны.

Физическая модель поперечной механической волны

Поперечные волны в газах и жидкостях

Отражение поперечных волн. Пример

Различают продольные и поперечные волны.

Продольная волна – волна, в которой движение частиц среды происходит в направлении распространения волны.

Пример – волна в пружине

Продольные волны могут распространяться в любой среде, в том числе в жидкости и газе.

Сжатие газа поршнем изменяет компоненту скорости молекул, направленную вдоль хода поршня. При последующих упругих столкновениях одинаковых молекул возмущение передается в среде.

Поперечная механическая волна – волна в которой частицы среды перемещаются перпендикулярно направлению распространения волны.

В твердом теле из-за сильной связи частиц между собой возможно возникновение поперечных волн.

Пример – сейсмические волны при землетрясении.

Первоначальное возмущение вдоль оси X начинает распространяться в виде поперечной волны по оси Y.

Поперечные волны в газах и жидкостях не возникают, так как в них отсутствует фиксированное положение частиц.

Поперечная волна в шнуре, дошедшая до точки крепления шнура, отражается. Форма отражения зависит от того, как закреплен шнур.

В случае жесткого крепления по третьему закону Ньютона на шнур будет действовать сила, противоположная силе, действующей со стороны шнура. Волна отразится в противофазе.

При подвижном закреплении конца шнура волна отразится в фазе с падающей волной.. Опускаясь вниз, свободно закрепленный конец, изменяет форму шнура, создавая отраженную волну, совпадающую по фазе с падающей.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]