Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
examination_question.doc
Скачиваний:
88
Добавлен:
27.08.2019
Размер:
4.38 Mб
Скачать

Корпускулярно-волновой дуализм(уч.11кл.Стр.318-321,323-325)

Корпускулярные и волновые свойства фотонов

Определение корпускулярно-волнового дуализма

Дифракция фотонов.

Опыт Джофри Тейлора по дифракции отдельных фотонов

Соотношение неопределенности Гейзенберга (уч.11кл.стр.323-325)

Распространение света в виде потока фотонов и квантовый характер взаимодействия света с веществом подтверждены многими экспериментами, доказывающими квантовые свойства света.

Однако оптические явления (поляризация, интерференция, дифракция) свидетельствуют о волновых свойствах света.

Для объединения волновой и корпускулярной теорий в физике возникло представление о корпускулярно-волновом дуализме, лежащее в основе всей современной физики.

Корпускулярно-волновой дуализм – проявление в поведении одного и того же объекта как корпускулярных, так и волновых свойств.

Квант света – не волна, но и не корпускула. Фотоны – особые микрочастицы, энергия и импульс которых (в отличие от обычных материальных точек) выражаются через волновые характеристики – частоту и длину волны: E = hυ, p = h/λ

Дифракция отдельных фотонов

Дифракция и интерференция света объясняются наличием волновых свойств у каждого отдельного фотона. Это подтвердил опыт 1909 г. Джофри Тейлора по наблюдению дифракции поочередно летящих мимо иглы одиночных фотонов.

Интенсивность света в опыте была сильно понижена с помощью светофильтров. Ослабление интенсивности означает уменьшение числа падающих на щель фотонов.

В результате можно настолько уменьшить их число, что фотоны будут следовать друг за другом с интервалом времени, на несколько порядков превышающим время, за которое фотон попадает на фотопластину, помещенную за щелью на расстоянии L.

Благодаря этому фотоны не могут взаимодействовать (интерферировать) друг с другом, и налетают на щель поодиночке, попадая в ту или иную точку фотопластины.

Чем больше фотонов попадает в данную область, тем больше интенсивность света в ней.

Дифракционная картина на экране за щелью оказывается результатом статистического распределения отдельных фотонов.

Полученная в опыте зависимость интенсивности света от координаты полностью совпала к картиной распределения интенсивности света за щелью, описываемой волновой теорией.

Анализ дифракции одиночных фотонов на щели показывает, что движение фотонов принципиально отличается от движения классических частиц. Траекторию движения классической частицы (материальной точки) можно однозначно предсказать, зная ее начальную координату и скорость.

Заранее невозможно предсказать, в какую точку после дифракции на щели попадет фотон. Можно говорить лишь о вероятности попадания фотона в окрестность определенной точки.

Дифракционная картина за щелью возникает потому, что вероятность попадания фотона в разные точки экрана неодинакова.

При большой интенсивности света, когда число фотонов велико, свойства света хорошо объясняются волновой теорией. При малой интенсивности, малого числа фотонов, свойства света описываются квантовой теорией.

При падении на щель одиночных фотонов разной частоты на экране возникают вспышки разного цвета, соответствующего данной частоте, энергия которых пропорциональна частоте света.

Коэффициент пропорциональности между энергией и частотой – постоянная Планка h.

Соотношение неопределенности Гейзенберга

В классической механике, зная начальную координату и скорость (импульс) частицы, можно с помощью законов динамики Ньютона найти ее положение и скорость (импульс) в произвольный момент времени. Всякая частица движется по определенной траектории.

В микромире понятие определенной траектории не имеет смысла. Зная начальное состояние электрона, невозможно однозначно предсказать его будущее движение.

Корпускулярно-волновой дуализм частиц означает, что корпускулярные и волновые свойства неразделимы.

Координаты частицы характеризуют ее корпускулярные свойства, длина волны де Бройля и связанный с ней импульс характеризует волновые свойства частицы.

Область локализации частицы можно ограничить узкой щелью шириной a, на которую по оси X падает поток электронов с импульсом p.

При этом неточность измерения или неопределенность координаты y частицы y – a, так как точно неизвестно, через какую именно точку щели пролетает электрон.

Волновые свойства электрона характеризуются длиной волны де Бройля λБ = h/p

При дифракции на щели электрон изменяет направление своего движения, соответственно направление скорости и импульса. Возникает компонента импульса по оси Y:

py = p sin(α) = sin(α)

Для оценки py можно использовать угол α1, соответствующий первому дифракционному минимуму на щели: a sin(α1) = λ1

Следовательно : py =

Реально возможно попадание электрона в область дифракционных максимумов более высоких порядков, поэтому неточность измерения импульса, или неопределенность импульса py может даже превосходить py:

py

Соотношение неопределенностей Гейзенберга:

Произведение неопределенности координаты частицы на неопределенность ее импульса не меньше постоянной Планка:

ypy h .

Пусть импульс частицы точно известен, т.е. py = 0. Это значит, что точно известна и длина волны де Бройля λБ =h/p. Из соотношения неопределенностей следует:

y ≥  

Дело в том, что длина волны точно определена лишь для гармонической волны постоянной амплитуды и бесконечной протяженности по оси Y. Это значит, что частицу можно обнаружить в любой точке пространства. Она не локализована y  .

С другой стороны, чем точнее определяется координата частицы, тем менее точным становятся сведения о ее импульсе.

Если y  , то py ≥  

Соотношение неопределенностей Гейзенберга позволяет оценивать минимальные энергии, которыми обладают микрочастицы при их локализации в определенной области пространства.

Соотношение неопределенностей существует и между другими парами физических величин. Например, между энергией частицы и временем ее измерения.

Кинетическая энергия частицы, движущейся по оси Y: Ey = mvy2/2

Неопределенность энергии: Ey = vy ≈ vy = mvyy

Неопределенность импульса (py = mvy): py = mvy

Неопределенность координаты (y = vyt): y = vyt

Подставляя p и y в соотношение неопределенностей:

mvyvyt ≥ h

Соотношение неопределенностей для энергии частицы и времени ее измерения:

Eyt ≥ h .

Физический смысл этого соотношения: чем меньше время t частица пребывает в некотором состоянии, тем менее определена ее энергия

Ey

В стационарном состоянии, где время пребывания частицы стремится к бесконечности t , ее энергия вполне определена, так как Ey  0

Принципиальный вывод, следующий из соотношений неопределенности Гейзенберга:

Нельзя независимо рассматривать корпускулярные и волновые характеристики микрочастиц: они взаимосвязаны.

Одновременное точное определение положения и импульса частицы невозможно.

Этот вывод не согласуется с привычными представлениями классической механики об определенной координате и скорости (импульсе) частицы.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]