Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
examination_question.doc
Скачиваний:
88
Добавлен:
27.08.2019
Размер:
4.38 Mб
Скачать

Радиоактивность (уч.11кл.Стр.357-362,363-367)

Радиоактивность

Виды радиоактивности

Характеристики видов радиоактивного распада (α, β-, β+, γ)

Электронное антинейтрино

Энергия радиоактивного распада

Закон радиоактивного распада (см.ниже уч.11кл.стр.363-367)

Беккерель(см.ниже уч.11кл.стр.363-367)

Кюри(см.ниже уч.11кл.стр.363-367)

Активность радиоактивного распада(см.ниже уч.11кл.стр.363-367).

Использование радиоактивного распада

Большинство известных изотопов являются неустойчивыми и самопроизвольно распадаются на более устойчивые изотопы.

Радиоактивность –явление самопроизвольного распада и превращения одних (нестабильных) атомных ядер в другие с испусканием различных частиц

Устойчивыми и стабильными являются лишь атомные ядра с энергией связи нуклонов, большей суммарной энергии связи нуклонов с продуктах распада.

Это явление определяется как самопроизвольное превращение неустойчивого изотопа одного химического элемента в изотоп другого; при этом происходит испускание электронов, протонов, нейтронов или ядер гелия.

Было установлено, что эти превращения ядер не зависят от внешних усло­вий: освещения, давления, температуры и т.д.

Существует два вида радио­активности:

- естественная – радиоактивность, наблюдаемая у неустойчивых изотопов, существующих в природе. Как прави­ло, она имеет место у тяжёлых ядер, располагающихся в конце таблицы Менделеева, за свинцом. Однако имеются и лёгкие естественно-радиоактивные ядра: изотоп калия , изотоп углерода и другие.

- искусственная – радиоактивность изотопов, полученных искусственно при ядерных реакциях

Принципиального различия между ними нет.

Известно, что естественная радиоактивность тяжёлых ядер сопровож­дается излучением, состоящим из трёх видов: -, -, -лучи.

Причиной радиоактивного распада является нарушение баланса между числом протонов с ядре Z и числом нейтронов N. Во всех стабильных ядрах (за исключением ) Z ≤ N поле ядерного притяжения нейтронов компенсирует кулоновское отталкивание протонов.

При нарушении требуемого баланса ядро обладает избыточной энергией и стремиться перейти в состояние с меньшей энергией.. Ядра, содержащие избыточное число протонов, освобождаются от этого избытка в результате альфа-распада.

-лучи - это поток ядер гелия ( заряд 2е, а масса 4 а.е.м.) обладающих большой энергией, которые имеют дискретные значения.

Знак заряда у них положительный. Имеют большие скорости, достигающие десятых долей скорости света, значит обладают большой энергией.

Альфа-распад – спонтанное превращение радиоактивного ядра в новое ядро с испусканием α-частицы

-лучи - поток электронов движущихся с огромными скоростями близкими к скорости света, энергии которых принимают всевозможные значения от величины близкой к нулю до 1,3 МэВ.

Природа бета лучей была установлена раньше всех – в 1899 году. По их отклонению в электрическом и магнитных полях был измерен удельный заряд. Оказалось, что он такой же как у электрона.

Ядра, содержащие избыточное число нейтронов, уменьшают их число в результате бета-распада.

Бета(минус)- распад – спонтанное превращение радиоактивного ядра в новое ядро с испусканием электрона и антинейтрино.

-лучи — электромагнитные волны с очень малой длиной волны (10-10-10-13 м)

Скорость распространения - около скорости света.

Ядра обладают способностью самопроизвольно распадаться. При этом устойчивыми являются только те ядра, которые обладают минимальной энергией по сравнению с теми, в которые ядро может самопроизвольно превратиться.

Ядра, в которых протонов больше, чем нейтронов, нестабильны, т.к. увеличивается кулоновская сила отталкивания .

Ядра, в которых больше нейтронов, тоже нестабильны, т.к. масса нейтрона больше массы протона , а увеличение массы приводит к увеличению энергии.

Гамма-излучение – электромагнитное излучение, возникающее при переходе ядра из возбужденного в более низкие энергетические состояния.

Ядра могут освобождаться от избыточной энергии либо делением на более устойчивые части (α-распад), либо изменением заряда (β-распад).

α-распадом называется самопроизвольное деление атомного ядра на альфа частицу и ядро-продукт.

α -распаду подвержены все элементы тяжелее урана.

Способность α -частицы преодолеть притяжение ядра определяется туннельным эффектом (уравнением Шредингера).

При α-распаде не вся энергия ядра превращается в кинетическую энергию движения ядра-продукта и α-частицы. Часть энергии может пойти на возбуждения атома ядра-продукта. Таким образом, через некоторое время после распада ядро продукта испускает несколько гамма-квантов и приходит в нормальное состояние.

С учетом закона сохранения электрического заряда и числа нуклонов уравнение альфа-распада:

В результате альфа-распада порядковый номер элемента в таблице Менделеева уменьшается на две единицы, а массовое число на четыре.

Широко применяемым источником α-частиц является радий, превращающийся при распаде в радон:

β(минис)-распад представляет собой самопроизвольное превращение атомного ядра, в результате которого его заряд увеличивается на единицу за счет испускания электрона.

Но масса нейтрона превышает сумму масс протона и электрона.

Этот объясняется выделением еще одной частицы – электронного антинейтрино:

β(плюс)-распад

Не только нейтрон способен распадаться. Свободный протон стабилен, но при воздействии частиц он может распасться на нейтрон, позитрон и нейтрино.

Если энергия нового ядра меньше, то происходит позитронный β(плюс)-распад:

С учетом закона сохранения электрического заряда и числа нуклонов уравнение бета(минус)-распада:

В результате бета(минус)-распада порядковый номер элемента в таблице Менделеева увеличивается на единицу.

В процессе бета-распада один из нейтронов превращается в протон. Вследствие закона сохранения электрического заряда образуется электрон.

В результате выделяется энергия распада Ek = (mn – mp –me)c2

Теоретически практически вся эта энергия должна передаваться более легкой частице – электрону. Поэтому предполагали, что при бета-распаде электроны должны обладать примерно одинаковой энергией.

Эксперименты Чедвика (1914 г.) показали, что энергия электронов при бета-распаде может быть любой в пределах от нуля до теоретического максимума. Следовательно, не вся энергия передается электрону.

В 1931 г. австрийский физик Вольфганг Паули предположил, что при бета-распаде возникает еще одна электрически нейтральная частица, которая приобретает импульс и уносит часть энергии распада.

Эту частицу, появляющуюся всегда вместе с электроном, стали называть электронное антинейтрино (итал. neutrino – нейтрончик)

Отличие электронного антинейтрино от нейтрино состоит в противоположной ориентации их спинов. Спин нейтрино направлен противоположно его импульсу (направлению скорости движения), а спин антинейтрино – сонаправлен с ним.

Таким образом процесс превращения нейтрона в протон сопровождается вылетом не только электрона, но и электронного антинейтрино.

Электрон и антинейтрино не входят в состав атома, а рождаются в процессе бета-распада.

Распределение энергии распада между электроном и антинейтрино носит случайный характер: энергия уносится и электроном и антинейтрино.

Как и α-распад, β-распад также может сопровождаться γ-излучением.

Существует также еще один вид распада – спонтанное деление ядер.

Самым легким элементом, способным к такому распаду, является уран.

Энергия радиоактивного распада – суммарная кинетическая энергия продуктов распада.

Кинетическая энергия продуктов распада определяется разностью масс материнского ядра и продуктов распада:

Например, при распаде : Ek = (mRa – mRn –me)c2

См.ниже «Закон радиоактивного распада»

Радиоактивность широко используется в научных исследованиях и технике.

Разработан метод контроля качества изделий или материалов – дефектоскопия.

Гамма-дефектоскопия позволяет установить глубину залегания и правильность расположения арматуры в железобетоне, выявить раковины, пустоты или участки бетона неравномерной плотности, случаи неплотного контакта бетона с арматурой. Просвечивание сварных швов позволяет выявить различные дефекты.

Просвечиванием образцов извест­ной толщины определяют плотность различных строительных материалов; плотность, достигаемую при формировании бетонных изделий или при укладке бетона в монолит, необходимо контролировать, чтобы получит заданную прочность всего сооружения.

По степени по­глощения -лучей высокой энергии можно судить о влажности материа­лов.

Построены радиоактивные приборы для измерения состава газа, при­чём источником излучения в них является очень небольшое количество изотопа, дающего -лучи.

Радиоактивный сигнализатор позволяет опреде­лить наличие небольших примесей газов, образующихся при горении лю­бых материалов. Он подаёт сигнал тревоги при возникновении пожара в помещении.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]