Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Obshaya_Himia_Ch2.doc
Скачиваний:
51
Добавлен:
14.07.2019
Размер:
1.58 Mб
Скачать

Информационная часть

Окислительно-восстановительные взаимодействия связаны с переносом электрона от одной частицы к другой:

окислитель + восстановитель

Окисленная и восстановленная формы одного и того же вещества образуют редокс-систему.

Важнейшей термодинамической характеристикой редокс-системы является окислительно-восстановительный потенциал (редокс-потенциал ), величину которого можно определить по уравнению Нерста-Петерса.

, где

аокисл, авосст – активности окисленной и восстановленной форм редокс-системы;

R – универсальная газовая постоянная;

Т – термодинамическая температура, Ко;

F – число Фарадея;

z – число электронов, принимающих участие в элементарном редокс-процессе.

Величина о представляет собой стандартный редокс-потенциал, т.е. потенциал, измеренный при Т=298о К и аокисл = авосст = 1 моль/л. Стандартные редокс-потенциалы приводятся в справочных таблицах.

Если в окислительно-восстановительном процессе принимают участие ионы водорода, то говорят о формальном потенциале (r). Для процессов, протекающих в живых системах, т.е. при условии аокисл = авосст, рН=7,36 и Т=310о К (физиологический уровень), формальный потенциал называют мид-поинт потенциалом.

Для редокс-систем с участием ионов водорода уравнение Нернста-Петерса имеет вид:

, где

- активность ионов водорода;

m – стехиометрический коэффициент при ионе водорода в описываемой полуреакции.

Редокс-потенциал характеризует в целом систему, т.е. окислительно-восстановительную пару. При записи потенциала химическая природа системы указывается в виде нижнего индекса, причем окислитель в этом индексе записывается в числитель, а восстановитель в знаменатель.

Если металл находится в растворе собственной соли, т.е.:

Меz+ + ze  Meo,

то потенциал, возникающий на границе раздела фаз «металл-раствор», называют электродным потенциалом. Величина электродного потенциала определяется уравнением Нернста:

, где

о – стандартный электродный потенциал;

а(Меz+) – активность ионов металла в растворе.

При сравнении уравнений Нернста-Петерса и Нернста очевидна их схожесть. В случае электродного потенциала восстановленная форма редокс-пары – металл, т.е. твердое вещество. Активность твердой фазы является постоянной величиной и поэтому не указывается в уравнении Нернста.

Возможность самопроизвольного протекания редокс-процесса решается:

  • либо расчетом Gо реакции по стандарстным термодинамическим функциям;

  • либо расчетом электродвижущей силы (ЭДС) гальванического элемента.

В любом редокс-процессе принимают участие как минимум две редокс-системы.

ЭДС гальванического элемента называется разность потенциалов двух редокс-систем. Процессы идут самопроизвольно, если эта величина ЭДС больше нуля, т.е. положительна:

Е = 1 - 2

Гальванический элемент – это устройство из двух электродов, в котором химическая энергия превращается в электрическую.

Совокупность различных методов исследования основанная на измерении потенциалов электродов, называется потенциометрией.

Поскольку измерить абсолютное значение потенциала отдельно взятого электрода нельзя, для практических целей измеряют ЭДС гальванического элемента, составляемого из измерительного электрода, потенциал которого зависит от параметров изучаемой редокс-системы, и электрода сравнения, потенциал которого известен (приводится в справочнике) и практически постоянен при прохождении небольших токов.

Для определения редокс-потенциала часто используют платиновый электрод. Этот инертный металл является как бы посредником в процессе передачи электрона окислителю от восстановителя.

При записи схем (формулы) гальванических элементов придерживаются следующих правил:

1. Электроды записываются слева направо в порядке возрастания потенциала.

2. Вещества, входящие в состав одной фазы, записываются через запятую.

3. Границы раздела «проводник 1 рода – проводник 2 рода» обозначаются одной вертикальной чертой, двух проводников второго рода – пунктирной вертикальной чертой.

4. Контакт проводников второго рода, осуществляемый посредством солевого мостика, обозначается сдвоенной вертикальной чертой.

Например: Zn / ZnSO4 // CuSO4 / Cu

или

Pt, H2 / H+ // AgCl, HCl / Ag

На величину редокс-потенциала влияют:

  • Природа редокс-системы.

  • рН раствора, если в окислительно-восстановительном процессе участвуют ионы водорода или гидроксид-ионы.

  • Соотношение активностей окисленной и восстановленной форм. С увеличением концентрации окисленной формы потенциал возрастает, а с увеличением концентрации восстановленной формы – уменьшается. Концентрация окисленной или восстановленной форм может значительно изменяться за счет протекания конкурирующих процессов (протолитических, гетерогенный, комплексообразовательных).

  • Температура.

Для нормального осуществления многих биологических функций часто необходима обратимость химических процессов, лежащих в их основе. Обратимость определяется взаимодействием термодинамических и кинетических факторов.

С кинетических позиций для обратимости процессов необходимы достаточно низкие значения энергии активации. В этом отношении удобным переносчиком электронов в живых системах являются ионы металлов, связанные в общие комплексы. Присоединение электрона к такой структуре и его отдача вызывают изменения лишь электронной конфигурации атома металла, не затрагивая глубинные структуры биолигандов.

Уникальная роль в живых системах отведена двум редокс-системам неорганического характера: Fe3+/Fe2+ и Cu2+/Cu+.

Биолиганды стабилизируют в большей степени в первой паре всегда окисленную форму, а во второй паре – преимущественно восстановленную.

Атомы железа входят в состав цитохромов и железосеропротеинов.

Атомы меди входят в состав более 30 биокомплексых соединений. Ферменты, содержащие медь, в большинстве своем являются оксиредуктазами, т.к. они ускоряют окислительно-восстановительные реакции.

В редокс-процессах, протекающих в живых организмах, принимают участие также соединения кобальта, марганца и молибдена. Редокс-потенциалы многих биологических редокс-систем имеют низкие значения, т.е. для них преобладающей функцией является восстановительная. Окислители, реагируя с восстановленными формами компонентов редокс-систем даже обратимо, значительно повышают потенциалы и разлаживают четко отработанную последовательность окислительно-восстановительных метаболических реакций. Во многих случаях сильные окислители необратимо взаимодействуют с различными субстратами, что приводит к тяжелым последствиям.

Хотя хром и марганец являются жизненно необходимыми элементами, их соединения в высшей степени окисления (хроматы, дихроматы, перманганаты) являются токсичными для многих организмов.

Токсическое действие NO и NO2, концентрация которых в воздухе постоянно возрастает, также связано с их свойствами сильных окислителей. Нитраты, попадающие в продукты питания в результате чрезмерного использования азотных удобрений, в организме восстанавливаются до нитритов:

NO + 2H+ + 2  NO + H2O

Нитриты являются чрезвычайно токсичными веществами: они вызывают окисление гемоглобина:

Hb + NO + 2H+ + е  метHb + NO + H2O.

В составе метгемоглобина находится железо (III). Образовавшийся в результате окисления гемоглобина оксид азота (II) образует стабильный комплекс с еще не окислившимся гемоглобином. Здесь сочетаются окислительно-восстановительный и лигандообменный механизмы токсического действия. Помимо этого, нитриты, как соли слабой кислоты, реагируют с НС1 в желудочном содержимом, образуя при этом азотистую кислоту, которая со вторичными аминами образует канцерогенные нитрозамины:

Действие многих бактерицидных веществ (О3, С12, хлорная известь и др.) также основано на окислительно-восстановительных процессах.

Редокс-процессы применяются и для детоксикации. При отравлениях сероводородом дают подышать слегка увлажненной хлорной известью, из которой выделяются небольшие количества хлора. При отравлениях бромом дают вдыхать пары аммиака.

Потенциометрические методы основаны на измерении потенциалов электродов, являющихся функцией активностей ионов в растворе.

Основной задачей в потенциометрии является правильный выбор измерительного электрода, который воспроизводимо отражает свойства раствора, а именно активность ионов. По механизму возникновения потенциала различают ионно-металлические (сюда же относят и газовые) электроды, редокс-электроды, мембранные электроды.

Ионно-металлический электрод, представляющий собой металл, опущенный в раствор соли этого металла, функционирует как электрод первого рода, если его потенциал зависит от активности катиона в растворе. Если же металлический электрод покрыт электролитически нанесенным слоем малорастворимой соли этого металла, то он функционирует как электрод второго рода, т.к. отражает активность аниона, образующего эту малорастворимую соль.

В силу многих причин не все металлы могут быть использованы для изготовления электродов, измеряющих активность их катионов. В этом случае часто используются мембранные электроды, способные давать потенциалы, зависящие от активности ограниченного числа ионов, а в некоторых случаях – только одного типа ионов. Такие электроды называют ионоселективными электродами.

Примером ионоселективного электрода является стеклянный электрод, потенциал которого зависит от активности ионов Н3О+.

Силикат натрия, входящий в состав стеклянной мембраны толщиной 0,03-0,1 мм, подвергается гидролизу до кремниевой кислоты. Протоны, возникающие при диссоциации кремниевой кислоты, способных к обмену с катионами, содержащимися в растворе, контактирующем с мембраной. При низких значениях рН, т.е. при большой концентрации ионов Н3О+ они переходят в состав мембраны, в результате чего возникает скачок потенциала на границе раздела стекло-раствор. При высоких значениях рН ионы Н3О+ наоборот переходят в раствор.

Гальваническая цепь, содержащая в качестве электрода сравнения хлорсеребряный электрод, а в качестве измерительного – стеклянный, записывается так:

внутренний электрод

сравнения

Ag

AgCl

KCl

c = const

a(H3O+) = x

стеклянная мембрана

1

a(H3O+) = 1

KCl

AgCl

2

Ag

внешний электрод

сравнения

стеклянный электрод

Чем больше разница активностей Н3О+ в растворах, омывающих внутреннюю и внешнюю мембрану, тем больше потенциал стеклянного электрода.

При полной идентичности внешней и внутренней мембраны и при равных активностях Н3О+1 = 2. Однако полная идентичность мембран труднодостижима, поэтому каждый стеклянный электрод имеет свою постоянную, обусловленную асимметрией. Это обстоятельство диктует необходимость перед измерением проводить калибровку электрода.

Устройство стеклянного электрода имеет вид.

Модифицируя стеклянную мембрану различными ионами, можно получить Na-селективный электрод, Li-селективный электрод. Мембраны могут быть в электродах и жидкими. Они образованы несмешивающимися с водой жидкостями. Так, эфиры фосфорной кислоты с двумя алифатическими радикалами С816 способны обмениваться с водным раствором ионами Са2+.

[(RO2POO]2Ca

2[(RO)2POO]-

+

Ca2+

орг.фаза

орг.фаза

водная фаза

На таком механизме основано действие Са2+-селективного электрода.

Калиевый электрод состоит из мембраны, представляющей собой раствор валиномицина в дифениловом эфире. Валиномицин избирательно образует прочный макроциклический комплекс с ионами калия.

Наряду с упомянутыми электродами в медицине широко применяются ферментные электроды.

Прямые потенциометрические методы определения концентрации тех или иных ионов требуют предварительного построения градуировочного графика.

Косвенные потенциометрические методы чаще всего используются для индикации точки эквивалентности в титриметрических методах, когда применение обычных индикаторов затруднено. В основе потенциометрического титрования могут лежать те же реакции, что применяются и в классических методах: кислотно-основные, окислительно-восстановительные, осадительные, комплексообразования. Точка эквивалентности определяется по резкому скачку потенциала измерительного электрода, более точно – по максимуму первой производной dE/dV или по изменению знака второй производной d2E/dV2.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]