Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Физика 11 клас 1 частина.doc
Скачиваний:
124
Добавлен:
06.11.2018
Размер:
6.82 Mб
Скачать

§ 5. Негармонічні коливання

Вільні коливання тягарця на пружині чи маятника є гармонічними лише тоді, коли немає тертя. Спостережен­ня за вільними коливаннями маятників показують, що їх амплітуда поступово зменшується і через деякий час коли­вання припиняються. Вільні коливання завжди затухають. Вони вже не є гармонічними і до них незастосовне поняття амплітуди. Однак умовно це поняття зберігають і у випад­ку затухаючих коливань. Поняття періоду, а також часто­ти не можна застосовувати до затухаючих коливань, оскільки коливальний рух не повторюється через однакові проміжки часу. Для коливань, які слабо затухають, понят­тя періоду зберігають. Графік затухаючих коливань пока­зано па малюнку 12. Оскільки сили тертя трохи сповіль­нюють рух коливальної системи, то період затухаючих коливань поступово спадає.

Графік затухаючих коливань неважко дістати, скори­ставшись маятником з лійкою, заповненою піском.

Амплітуда затухаючих коливань і період залежать від характеру сил опору. Практично найбільш цікавим і по­ширеним в випадок малих коливань, при яких звичайно швидкість тіла невелика і сила опору пропорційна швид­кості:

Fo= bv, (5.1)

де b — стала, яку називають коефіцієнтом опору; знак мінус показує, що сила опору і швидкість мають проти­лежні напрями.

Рівняння коливального руху при врахуванні сил опору стане дещо складнішим (воно має включати додаткову силу Fo= — bv):

Поділивши всі члени цього рівняння на т і позначивши одержимо рівняння руху в такому вигляді:

(5.2)

(5.2)

Це також лінійне однорідне диференціальне рівняння другого порядку зі сталими коефіцієнтами, які залежать від параметрів системи і коефіцієнта опору Ь. Воно від­різняється від (2.2) наявністю члена з першою похідною від х. Підкреслимо, що коли 6=0, то (5.2) переходить у (2.2). В математиці доводиться, що розв'язком рівняння (5.2) є така функція від t:

(5.3)

де є — основа натуральних логарифмів. Графік цієї функції показано на малюнку 13. Пунктирними лініями показано межі, в яких знаходиться зміщення коливної точки х. З рівняння (5.3) видно, що внаслідок спільної дії пруж­них сил F= —kx і сил опору Fo= — bv система здійснює

коливальний рух, амплітуда якого х,пе (" зменшується з часом за експоненціальним законом, тобто в системі виникають затухаючі коливання.

§ 6. Автоколивання

Під час затухаючих коливань енергія системи витра­чається на подолання опору середовища. Якщо компенсу­вати ці втрати енергії, коливання стають незатухаючими. Поповнення енергії системи може здійснюватися за раху­нок зовнішньої періодичної сили, причому ця сила має діяти в такт з коливаннями, інакше вона може послабити їх або припинити зовсім. Можна зробити так, щоб коли­вальна система сама керувала зовнішнім впливом, забезпе­чуючи узгодженість дії сили із своїм рухом. Така система називається автоколивальною, а здійснювані нею незатухаючі коливання — автоколиваннями.

На відміну від вимушених коливань, частота й амплі­туда автоколивань визначаються властивостями самої коливальної системи. Автоколкзання відрізняються також від вільних коливань. По-перше, вони з часом не затуха­ють, по-друге, їх амплітуда не залежить від величини початкового короткочасного вшшву, який збуджує коли­вання.

У будь-якій автоколивальній системі можна виділити три основні елементи: 3) коливальну систему; 2) джерело енергії; 3) пристрій із зворотним зь'язком, який регулює надходження енергії із джерела в коливальну систему. Енергія, що надходить із джерела за період, дорівнює енергії, витраченій у коливальній системі за той самий час.

Прикладом найпростішої механічної автоколивальної системи може бути годинник з маятником (мал. 14). У ньому коливальною системою є маятник, джерелом енер­гії — гиря, піднята над землею, або стальна пружина. Основними деталями пристрою, який здійснює зворотний зв'язок, є храпове колесо 1 і анкер 2. Гиря {пружина) обер­тає храпове колесо. Під час кожного коливання маятника зубець храпового колеса штовхає анкерну вилку, яка роз­гойдує маятник. У результаті запас енергії, витраченої на подолання сил тертя, поповнюється за рахунок енергії гирі, піднятої над землею, або заведеної пружини. Обер­тання стрілок годинника здійснюється за допомогою зубчастих коліс від- храпового колеса.

У даному випадку маятник сам «відкриває» і «закриває» доступ енергії із заводного механізму. Під час нормального ходу годинника енергія, яку дістає маятник, дорів­нює втраті енергії на тертя за час між двома діями сил. Якщо почат­кове відхилення маятника пере­вищує нормальне, то втрати на тер­тя будуть більшими, ніж надхо­дження енергії із заводного меха­нізму. Коливання затухають доти, поки не встановиться така амплі­туда коливань, при якій втрати на тертя компенсуються надходжен­ням енергії із джерела. Отже, ам­плітуда автоколивань визначається не енергією початкової дії сили, а співвідношенням між втратами і надходженням енергії, тобто вла­стивостями самої коливальної системи.

У техніці широко застосовують електромеханічні автоколивальні системи, в яких коливання здій­снює механічна система, а надходження енергії регулює­ться спеціальним електричним пристроєм.

Особливо широко автоколивання застосовуються в радіотехніці. Пізніше ви ознайомитеся з будовою авто­коливального генератора незатухаючих електромагнітних коливань.