
- •§ 1. Коливальний рух і коливальна система. Вільні коливання
- •§ 2. Гармонічні коливання. Період, частота, амплітуда і фаза гармонічних коливань
- •§ 3. Графічне зображення гармонічних коливальних рухів. Векторні діаграми
- •§ 4. Додавання гармонічних коливань. Принцип суперпозиції
- •§ 5. Негармонічні коливання
- •§ 6. Автоколивання
- •§ 7. Гармонічні і некармонічні коливання в природі н техніці
- •§ 8. Вільні електромагнітні коливання в контурі
- •§ 9. Перетворення енергії в коливальному контурі
- •§ 10. Рівняння гармонічних електромагнітних коливань у контурі
- •§ 11. Період, частота і фаза коливань
- •§ 12. Затухаючі електромагнітні коливання. Автоколивання
- •§ 13. Генератор незатухаючих коливань
- •§ 14. Вимушені електромагнітні коливання. Змінний струм
- •Миттєве значення ерс синусоїдального струму для фази 60° становить 120 в. Визначити амплітудне значення ерс.
- •3. Ерс змінного струму задана рівнянням. Знайти
- •§ 15. Генератор змінного струму
- •§ 16. Діючі значення напруги й сили струму
- •§ 17. Активний опір у колі змінного струму
- •§ 18. Ємність у колі змінного струму
- •§ 19. Індуктивність у колі змінного струму
- •§ 20. Закон Ома для електричного кола змінного струму
- •§ 21. Потужність в колі змінного струму
- •§ 22. Електричний резонанс. Резонанс напруг
- •§ 23. Поняття про спектр негармонійних коливань і про гармонічний аналіз періодичних процесів
- •§ 24. Вироблення електричної енергії
- •§ 25. Принципи роботи генераторів змінного і постійного струму
- •§ 26. Генератор трифазного струму
- •§ 27. Вмикання навантаження в трифазну систему зіркою і трикутником. Лінійні і фазні напруги
- •§ 28. Асинхронний двигун трифазного струму
- •§ 29. Трансформатор
- •Енергії
- •§ 31. Проблеми сучасної електроенергетики і охорона навколишнього середовища
- •§ 32. Електромагнітне поле
- •§ 33. Струм зміщення
- •§ 34. Електромагнітні хвилі і швидкість їх поширення
- •§ 35. Рівняння хвилі
- •§ 36. Властивості електромагнітних хвиль (відбивання, заломлення, інтерференція, дифракція, поляризація)
- •§ 37. Енергія електромагнітної хвилі. Густина потоку випромінювання
- •§ 38. Винайдення радіо
- •§ 39. Принципи радіотелефонного зв'язку. Амплітудна модуляція і детектування
- •§ 40. Найпростіший радіоприймач
- •§ 41. Радіолокація
- •§ 42. Поняття про телебачення
- •§ 43. Розвиток засобів зв'язку
- •§ 44. Світлові хвилі. Швидкість світла
- •§ 45. Інтерференція світла. Когерентність. Спектральний розклад при інтерференції
- •§ 46. Способи спостереження інтерференції світла
- •Що необхідно для утворення стійкої інтерференційної картини?
- •Які хвилі є когерентними? 5. Як можна одержати когерентні світлові хвилі?
- •§ 47. Інтерференція в тонких плівках
- •§ 48. Практичні застосування інтерференції світла
- •§ 49. Стоячі світлові хвилі
- •§ 50. Дифракція світла
- •§ 51. Принцип Гюйгенса — Френеля. Метод зон Френеля
- •§ 52. Дифракційна решітка
- •1. Визначити довжину хвилі монохроматичного світла, якщо макси мум першого порядку, одержаний за допомогою дифракційної решітки з періодомм, відхилився від нульового максимуму на кут
- •§ 53. Дифракційний спектр
- •§ 54. Визначення довжини світлової хвилі
- •§ 55. Поняття про голографію
- •§ 56. Поляризація світла
- •§ 57. Дисперсія світла
- •§ 58. Спектроскоп
- •§ 59, Спектри випромінювання
- •§ 60. Спектри поглинання
- •§ 61. Спектральний аналіз
- •§ 62. Поглинання світла
- •§ 63. Інфрачервоне і ультрафіолетове випромінювання
- •§ 64. Рентгенівське випромінювання
- •§ 65. Шкала електромагнітних хвиль
- •§ 66, Геометрична оптика як граничний випадок хвильової оптики
- •§ 67 Закони геометричної оптики
§ 28. Асинхронний двигун трифазного струму
Найпростішим способом обертове магнітне поле можна дістати, обертаючи підковоподібний магніт (мал. 65). Разом з магнітом обертатиметься й створюване ним магнітне поле. Якщо в таке поле помістити магнітну стрілку, то вона, намагаючись установитися вздовж ліній індукції магнітного поля, почне обертатися у той самий бік, в який обертається поле. Так само вестиме себе і замкнутий виток проводу (мал. 66). Внаслідок зміни магнітного потоку через виток під час обертання магнітного поля у витку збуджується ЕРС індукції й індукційний струм. На цей струм з боку магнітного поля діятиме сила Ампера. За
правилом Ленца індукційний струм у витку напрямлений так, що при взаємодії цього струму з магнітним полем зменшується зміна магнітного потоку внаслідок обертання магнітного поля. Тому рамка обертатиметься слідом за магнітним полем. У цьому можна переконатися й іншим способом, якщо за допомогою правила правої руки визначити напрям індукційного струму в рамці, а потім за допомогою правила лівої руки визначити напрям сил Ампера, які діють на окремі сторони рамки.
Замість рамки можна взяти масивний металевий циліндр або ротор у вигляді «білячого колеса» (мал. 67), еквівалентного великій кількості з'єднаних між собою провідних рамок. Під час обертання магнітного поля у товщі металу циліндра також виникають замкнуті індукційні струми (вихрові струми, або струми Фуко). Згідно з правилом Ленца взаємодія цих струмів з магнітним полем приводитиме в рух циліндр.
Однак поведінка в обертовому магнітному полі магнітної стрілки і короткозамкнутої металевої рамки дещо різна. Під час рівномірного обертання магнітної стрілки сумарний момент діючих на неї сил повинен дорівнювати нулю. Якщо на стрілку не діють зовнішні сили, то має дорівнювати нулю момент сил, які діють на стрілку з боку обертового магнітного поля. Тому в будь-який момент стрілка напрямлена вздовж поля і обертається синхронно з ним. Якщо на стрілку діє гальмівний зовнішній момент, то стрілка, обертаючись синхронно з полем, дещо відставатиме від нього за фазою, так щоб гальмівний момент зрівноважувався моментом сил з боку магнітного поля. Зрозуміло, що замість магнітної стрілки можна
взяти укріплений на осі постійний магніт або електромагніт, який живиться постійним струмом. Вони теж обертатимуться синхронно із зовнішнім обертовим магнітним полем.
Дещо інакше відбувається обертання короткозамкнутої рамки або суцільного циліндра. Сила індукційного струму залежить від відносної швидкості обертання магнітного поля і ротора. При синхронному обертанні індукційний струм відсутній і, отже, дорівнює нулю момент сил, які діють на ротор з боку магнітного поля. Тому ротор може обертатися синхронно з полем тільки тоді, коли ніякі гальмівні моменти на нього не діють. При наявності гальмівного моменту під час рівномірного обертання він повинен зрівноважуватися моментом сил, які діють на індукційні струми в роторі з боку магнітного поля. Для виникнення цих індукційних струмів ротор повинен обертатися повільніше, ніж магнітне поле. Таким чином, кутова швидкість ротора менша від кутової швидкості обертання магнітного поля і залежить від гальмівного моменту: чим він більший, тим повільніше обертається ротор.
Магнітна стрілка або електромагніт постійного струму — це модель синхронного двигуна змінного струму, який застосовується у тих випадках, коли необхідно мати строго постійну, незалежну від навантаження кількість обертів. Короткозамкнутий ротор в обертовому магнітному полі — це модель асинхронного двигуна змінного струму, кутова швидкість обертання ротора якого залежить від механічного навантаження. Завдяки винятковій простоті конструкції і високій надійності асинхронні двигуни мають широке застосування в техніці.
Обертове магнітне поле можна створити за допомогою змінного трифазного струму, а не за рахунок обертання магнітів. Виявляється, що коли увімкнути трифазний струм до трьох обмоток, розміщених під кутом 120° одна до одної (мал. 68), то магнітна поле поблизу точки перетину осей симетрії обмоток О постійне за величиною і буде рівномірно обертатися з кутовою швидкістю «. Індукція магнітного поля, створюваного кожною обмоткою, залежатиме від часу згідно з формулами (26.1):
(28.1)
Індукція результуючого поля
(28.2)
має
постійну величину, що дорівнюєі
рівномірно
обертається в площині осей котушок з кутовою швидкістю о). Щоб переконатися в цьому, спроектуємо вектор індукції результуючого поля В на осі х і у (мал. 69):
Скориставшись формулою різниці синусів двох кутів, дістанемо:
(28.3)
Аналогічно,
Після перетворень дістанемо:
(28.4)
Отже,,
тобто
вектор магнітної індукції сумарного поля має довжину
і
рівномірно обертається з кутовою
швидкістю о). Ми
одержали обертове магнітне поле без будь-якого механічного руху в споживачі електроенергії.
Помістимо в це поле короткозамкнутий ротор (мал. 70). У перший момент буде індукуватися велика ЕРС і, оскільки ротор короткозамкнутий, виникнуть великі струми і значний обертальний момент. Ротор почне обертатися слідом за полем.
Припустимо, він «догнав» поле і обертається з його швидкістю, тоді немає руху відносно поля, а тому немає електромагнітної індукції і сил Ампера. Внаслідок дії моменту сил тертя ротор починає відставати від магнітного поля. Виникає індукційний струм, який за правилом Ленца прагне зменшити відносну швидкість руху ротора в магнітному полі. При постійному навантаженні ротор обертається практично рівномірно, трохи повільніше, ніж магнітне поле. Момент сил Ампера, що при цьому виникає, достатній для подолання всіх опорів. При збільшенні навантаження ротор ще більше відстає від магнітного поля, зростають індукційний струм і момент сил Ампера. Саме тому, що ротор відстає від магнітного поля, двигун називається асинхронним.
Трифазний асинхронний двигун є симетричним навантаженням, тому для його живлення достатньо трипровід-ної лінії. Схема вмикання трифазного асинхронного електродвигуна показана на малюнку 71. Напрям обертання магнітного поля, а отже, і ротора електродвигуна, можна змінити на протилежний, якщо поміняти місцями кінці будь-якої пари проводів, увімкнутих до котушок статора, який створює магнітне поле.