
- •Министерство транспорта российской федерации
- •Введение
- •1. Основные понятия теории вероятностей
- •1.1. События. Классификация событий
- •1.2. Классическое и статистическое определение вероятности
- •1.3. Элементы комбинаторики
- •2. Алгебра событий
- •2.1. Действия над событиями
- •2.2. Теорема сложения вероятностей несовместных событий
- •2.3. Зависимые и независимые события
- •2.4. Теорема умножения вероятностей независимых событий
- •2.5. Вероятность появления хотя бы одного события
- •2.6. Условная вероятность
- •2.7. Теорема умножения вероятностей зависимых событий
- •2.8. Теорема сложения вероятностей совместных событий
- •2.9. Формула полной вероятности
- •2.10. Вероятность гипотез. Формула Байеса
- •3. Повторные независимые испытания
- •3.1. Формула Бернулли
- •3.2 Локальная теорема Муавра-Лапласа
- •3.3. Интегральная теорема Лапласа
- •3.4. Формула Пуассона
- •4. Случайные величины
- •4.1. Понятие случайной величины
- •4.2. Закон распределения случайной величины
- •4.3. Функция распределения случайной величины
- •4.4. Плотность вероятности
- •5. Числовые характеристики случайных величин
- •5.1. Математическое ожидание случайной величины
- •5.2. Дисперсия случайной величины
- •5.3. Среднее квадратическое отклонение случайной величины
- •5.4. Мода и медиана. Квантили
- •Решение. Находим функцию распределения
- •5.5. Моменты случайных величин. Асимметрия и эксцесс
- •5.6. Числовые характеристики независимых испытаний
- •5.7. Одинаково распределенные взаимно независимые случайные величины
- •6. Основные законы распределения
- •6.1. Биноминальный закон распределения
- •6.2. Закон распределения Пуассона
- •6.3. Равномерный закон распределения
- •6.4. Показательный (экспоненциальный) закон распределения
- •6.5 Функция надежности
- •6.6. Нормальный закон распределения
- •7. Предельные теоремы теории вероятностей
- •7.1. Закон больших чисел
- •7.1.1. Неравенство Чебышёва
- •7.1.2. Теорема Чебышёва
- •7.1.3. Теорема Бернулли
- •7.1.4. Теорема Пуассона
- •7.1.5. Теорема Маркова
- •7.2.Центральная предельная теорема
- •7.2.1. Теорема Ляпунова
- •7.2.2. Теорема Берри-Эссена
- •8. Многомерные случайные величины
- •8.1. Понятие многомерной случайной величины
- •8.2. Закон распределения вероятностей двумерной дискретной случайной величины
- •8.3. Функция распределения многомерной случайной величины
- •8.4. Плотность вероятности двумерной случайной величины
- •8.5. Условные законы распределения двумерной случайной величины
- •8.6. Зависимые и независимые случайные величины
- •8.7. Числовые характеристики двумерной случайной величины.
- •Библиографический список
- •Оглавление
- •Лаврусь Ольга Евгеньевна Конспект лекций по теории вероятностей
- •443022, Г. Самара, Заводское шоссе, 18
8. Многомерные случайные величины
8.1. Понятие многомерной случайной величины
Ранее мы рассматривали случайные величины, возможные значения которой определялись одним числом. Такие величины называют одномерными. Однако часто результат испытания характеризуется не одной случайной величиной, а некоторой системой случайных величин, которую называют многомерной случайной величиной или случайным вектором.
Многомерная случайная величина, случайный вектор, система случайных величин – это все различные интерпретации одного и того же математического объекта. В зависимости от удобства изложения мы будем пользоваться той или иной интерпретацией.
Так же, как и в случае одномерных случайных величин, случайные величины входящие в систему, могут быть как дискретными, так и непрерывными.
Например, успеваемость студентов вуза, которая характеризуется системой n случайных величин X1, X2, …, Xn – оценками по различным дисциплинам, проставленными в зачетной книжке – является дискретной многомерной величиной. А размер деталей, который характеризуются длиной (X), шириной (Y) и высотой (Z) – является непрерывной трехмерной величиной.
Геометрически двумерную (X, Y) и трехмерную (X, Y, Z) случайные величины можно изобразить случайной точкой плоскости Oxy или трехмерного пространства Oxyz. При этом случайные величины X, Y или X, Y, Z являются составляющими этих векторов. В случае n-мерного пространства (n > 3) также говорят о случайной точке этого пространства, хотя геометрическая интерпретация в этом случае теряет свою наглядность.
8.2. Закон распределения вероятностей двумерной дискретной случайной величины
Так же как и для одномерной случайной величины наиболее полным, исчерпывающим описанием многомерной случайной величины является закон ее распределения. При конечном множестве возможных значений многомерной случайной величины такой закон может быть задан в виде таблицы (матрицы), содержащей все возможные сочетания значений каждой из одномерных величин, входящих в систему, и соответствующие им вероятности.
Так, если рассматривается двумерная дискретная случайная величина (X, Y), то ее двумерное распределение можно представить в виде таблицы распределения (табл. 8.1), в каждой клетке (i, j) которой располагаются вероятности произведения событий pij = P[(X = xi)(Y = yj)].
Таблица 8.1
|
x1 |
… |
xj |
… |
xn |
|
y1 |
p11 |
… |
p1j |
… |
p1n |
p1 |
… |
… |
… |
… |
… |
… |
… |
yi |
pi1 |
… |
pij |
… |
pim |
pi |
… |
… |
… |
… |
… |
… |
… |
ym |
pm1 |
… |
pmj |
… |
pmn |
pm |
|
p1 |
… |
pj |
… |
pn |
1 |
Так как события [(X = xj)(Y = yi)] (i = 1, 2, …, m; j = 1, 2, …, n), состоящие в том, что случайная величина Х примет значение xj, а случайная величина Y – значение yi, несовместны и единственно возможны, то сумма их вероятностей равна единице, т.е.
.
Итоговые столбцы или строки таблицы распределения (X, Y) представляют соответственно распределение одномерных составляющих (xj, pj) или (yi, pi).
Действительно, распределение одномерной случайной величины Х можно получить, вычислив вероятность события X = xj (j = 1, 2, ..., n) как сумму вероятностей несовместных событий
pj = P(X = xj) = P[(X = xj)(Y = y1) + … + (X = xj)(Y = yi) + … + (X = xj)(Y = ym)] =
=
pj1
+ … + pji
+ … + pim
=
.
Аналогично
pj
=
.
Таким образом, чтобы по таблице распределения (табл. 8.1) найти вероятность того, что одномерная случайная величина примет определенное значение, надо просуммировать вероятности pij из соответствующего этому значению строки (столбца) данной таблицы.
Пример 8.1. Закон распределения дискретной двумерной случайной величины (X, Y) задан в табл. 8.2. Найти законы распределения одномерных случайных величин X и Y.
|
|
|
Таблица 8.2 |
Y\X |
2 |
4 |
6 |
1 |
0,05 |
0,35 |
0,20 |
3 |
0,15 |
0,20 |
0,05 |
Решение. Случайная величина Х может принять значения:
Х = 2 с вероятностью р1 = 0,05 + 0,15 = 0,20;
Х = 4 с вероятностью р2 = 0,35 + 0,20 = 0,55;
Х = 6 с вероятностью р2 = 0,20 + 0,05 = 0,25.
т.е. ее закон распределения
хj |
2 |
4 |
6 |
pj |
0,20 |
0,55 |
0,25 |
Аналогично закон распределения Y
|
yj |
1 |
3 |
|
|
pj |
0,6 |
0,4 |
◄ |